cosmoHammer package
Submodules
cosmoHammer.ChainContext module
-
class
cosmoHammer.ChainContext.
ChainContext
(parent, params)[source]
Bases: object
Context holding a dict to store data and information durring the computation of the likelihood
-
add
(key, value)[source]
Adds the value to the context using the key
Parameters: |
- key – string
key to use
- value – object
the value to store
|
-
contains
(key)[source]
Checks if the key is in the context
Parameters: | key – string
key to check |
Returns: | True if the key is in the context |
-
get
(key, default=None)[source]
Returns the value stored in the context at the key or the default value in the
context doesn’t contain the key
Parameters: |
- key – string
key to use
- default – string
the default value to use if the key is not available
|
-
getData
()[source]
Returns the data
Returns: | The data of this context |
-
getParams
()[source]
Returns the currently processed parameters
Returns: | The param of this context |
-
getParent
()[source]
Returns the parent
Returns: | The parent chain of this context |
-
remove
(key)[source]
Removes the value from the context
Parameters: | key – string
key to remove from the context |
cosmoHammer.ConcurrentMpiCosmoHammerSampler module
-
class
cosmoHammer.ConcurrentMpiCosmoHammerSampler.
ConcurrentMpiCosmoHammerSampler
(threads=1, **kwargs)[source]
Bases: cosmoHammer.MpiCosmoHammerSampler.MpiCosmoHammerSampler
A sampler implementation extending the mpi sampler in order to allow to
distribute the computation with MPI and using multiprocessing on a single node.
Parameters: |
- threads – (optional)
The number of threads to use for parallelization. If
threads == 1 ,
then the multiprocessing module is not used but if
threads > 1 , then a Pool object is created
- kwargs – key word arguments passed to the CosmoHammerSampler
|
cosmoHammer.Constants module
Some constants used by the samplers
cosmoHammer.CosmoHammerSampler module
-
class
cosmoHammer.CosmoHammerSampler.
CosmoHammerSampler
(params, likelihoodComputationChain, filePrefix, walkersRatio, burninIterations, sampleIterations, stopCriteriaStrategy=None, initPositionGenerator=None, storageUtil=None, threadCount=1, reuseBurnin=False, logLevel=20, pool=None)[source]
Bases: object
A complete sampler implementation taking care of correct setup, chain burn in and sampling.
Parameters: |
- params – the parameter of the priors
- likelihoodComputationChain – the callable computation chain
- filePrefix – the prefix for the log and output files
- walkersRatio – the ratio of walkers and the count of sampled parameters
- burninIterations – number of iteration for burn in
- sampleIterations – number of iteration to sample
- stopCriteriaStrategy – the strategy to stop the sampling.
Default is None an then IterationStopCriteriaStrategy is used
- initPositionGenerator – the generator for the init walker position.
Default is None an then SampleBallPositionGenerator is used
- storageUtil – util used to store the results
- threadCount – The count of threads to be used for the computation. Default is 1
- reuseBurnin – Flag if the burn in should be reused.
If true the values will be read from the file System. Default is False
|
-
createEmceeSampler
(callable, **kwargs)[source]
Factory method to create the emcee sampler
-
createInitPos
()[source]
Factory method to create initial positions
-
createInitPositionGenerator
()[source]
Returns a new instance of a Init Position Generator
-
createSampleFileUtil
()[source]
Returns a new instance of a File Util
-
createStopCriteriaStrategy
()[source]
Returns a new instance of a stop criteria stategy
-
getChain
()[source]
Returns the sample chain
-
isMaster
()[source]
Returns True. Can be overridden for multitasking i.e. with MPI
-
loadBurnin
()[source]
loads the burn in form the file system
-
log
(message, level=20)[source]
Logs a message to the logfile
-
paramValues
-
paramWidths
-
resetSampler
()[source]
Resets the emcee sampler in the master node
-
sample
(burninPos, burninProb=None, burninRstate=None, datas=None)[source]
Starts the sampling process
-
sampleBurnin
(p0)[source]
Run the emcee sampler for the burnin to create walker which are independent form their starting position
-
startSampleBurnin
()[source]
Runs the sampler for the burn in
-
startSampling
()[source]
Launches the sampling
cosmoHammer.LikelihoodComputationChain module
-
class
cosmoHammer.LikelihoodComputationChain.
LikelihoodComputationChain
(min=None, max=None)[source]
Bases: object
Implementation of a likelihood computation chain.
-
addCoreModule
(module)[source]
adds a module to the likelihood module list
Parameters: | module – callable
the callable module to add for the computation of the data |
-
addLikelihoodModule
(module)[source]
adds a module to the likelihood module list
Parameters: | module – callable
the callable module to add for the likelihood computation |
-
computeLikelihoods
(ctx)[source]
Computes the likelihoods by iterating thru all the modules.
Sums up the log likelihoods.
-
createChainContext
(p)[source]
Returns a new instance of a chain context
-
getCoreModules
()[source]
pointer to the likelihood module list
-
getLikelihoodModules
()[source]
pointer to the core module list
-
invokeCoreModule
(coreModule, ctx)[source]
Invokes the given module with the given ChainContext
-
invokeCoreModules
(ctx)[source]
Iterates thru the core modules and invokes them
-
invokeLikelihoodModule
(likelihoodModule, ctx)[source]
Invokes the given module with the given ChainContext
-
isValid
(p)[source]
checks if the given parameters are valid
-
setup
()[source]
sets up the chain and its modules
cosmoHammer.MpiCosmoHammerSampler module
-
class
cosmoHammer.MpiCosmoHammerSampler.
MpiCosmoHammerSampler
(**kwargs)[source]
Bases: cosmoHammer.CosmoHammerSampler.CosmoHammerSampler
A sampler implementation extending the regular sampler in order to allow for distributing
the computation with MPI.
Parameters: | kwargs – key word arguments passed to the CosmoHammerSampler |
-
createInitPos
()[source]
Factory method to create initial positions
-
createSampleFileUtil
()[source]
Returns a new instance of a File Util
-
isMaster
()[source]
Returns true if the rank is 0
-
loadBurnin
()[source]
loads the burn in form the file system
-
sample
(burninPos, burninProb, burninRstate, datas)[source]
Starts the sampling process. The master node (mpi rank = 0) persists the result to the disk
-
sampleBurnin
(p0)[source]
Starts the sampling process. The master node (mpi rank = 0) persists the result to the disk
cosmoHammer.exceptions module
-
exception
cosmoHammer.exceptions.
InvalidLikelihoodException
(params=None)[source]
Bases: cosmoHammer.exceptions.LikelihoodComputationException
Exception for invalid likelihoods e.g. -loglike >= 0.0
-
exception
cosmoHammer.exceptions.
LikelihoodComputationException
[source]
Bases: Exception
Exception for likelihood computation
Module contents
-
cosmoHammer.
getLogger
()[source]