'''
Created on Oct 30, 2013
@author: J.Akeret
'''
from __future__ import print_function, division, absolute_import, \
unicode_literals
from numpy.linalg.linalg import norm
from scipy.optimize.minpack import leastsq
from scipy.optimize import minimize
import numpy
import sys
def parabola(p, theta, thetabar=1):
"""
Computation of the paraboloid for the given curvature matrix and samples.
:param p: list of samples
:param theta: vector containing the lower triangle of the matrix and the offset from the true mean
:return: vector y from f(x,p)
"""
leng, dim = theta.shape
corrm, v, mu = transform(dim, p)
# _cov = corr2cov(corrm, v)
# R = numpy.linalg.inv(_cov)
if(any(v==0)):
vi = v
else:
vi = numpy.diag(1/v)
R = numpy.dot(vi, numpy.dot(numpy.linalg.inv(corrm), vi))
v = numpy.zeros(leng)
for i,thetaj in enumerate(theta):
thetaj = thetaj / thetabar
v[i] = numpy.dot(thetaj.T,numpy.dot(R, thetaj)) #+ numpy.dot(thetaj, mu)
return numpy.array(v)
def errfunc(p,theta,delta, thetabar):
"""
Error function defined by f(theta) - delta
:param p: list of samples
:param theta: the curvature matrix. see parabola def
:param delta: the measured values
"""
return parabola(p, theta, thetabar) - delta
def errfunc2(p,theta,delta, thetabar):
"""
Error function defined by f(theta) - delta
:param p: the curvature matrix. see parabola def
:param theta: list of samples
:param delta: the measured values
"""
return sum((parabola(p, theta, thetabar) - delta)**2)
def transform(dim, p):
"""
Transforms a vector containg the lower triangle of a matrix into a symmetric matrix
:param p: the vector
:return: the matrix and left over values
"""
corrm = numpy.identity(dim)
k=0
for i in range(1,dim):
for j in range(0,i):
corrm[i,j]= p[k]
k +=1
corrm += corrm.T - numpy.diag(corrm.diagonal())
vars = p[k:k+dim]
mu = p[k+dim:]
return corrm, vars, mu
def reverse(dim, R, vars):
"""
Transforms a symmetric matrix into a vector containig the lower triangle
:param R: the symmetric matrix
:return: the vector
"""
p = numpy.zeros(int(dim*(dim-1)/2))
k=0
for i in range(1, dim):
for j in range(i):
p[k] = R[i,j]
k +=1
p = numpy.append(p, vars)
return numpy.append(p, numpy.zeros_like(vars))
def bound(x):
dim = int(1./2 * (numpy.sqrt(8*len(x)+1)-1))
_, stds, _ = transform(dim, x)
return stds
class CurvatureFitter(object):
'''
Fits a paraboloid centered around the global best fit of the PSO by estimating a curvarture
matrix with the particle given in the swarm
:param swarm: list of particles
:param gbest: the global best particle at the last iteration
'''
def __init__(self, swarm, gbest):
'''
Constructor
'''
self.swarm = swarm
self.gbest = gbest
def fit(self):
"""
Fits the paraboloid to the swarm particles
:return: the mean = global best position and the estimated covariance matrix
"""
scale = 10**0
dim = len(self.gbest.position)
x = numpy.array([particle.position * scale for particle in self.swarm])
theta = (x - self.gbest.position * scale) #/ (self.gbest.position * scale)
norms = numpy.array(list(map(norm, theta)))
b = (norms < 0.1)
theta = theta[b]
fitness = numpy.array([particle.fitness * scale for particle in self.swarm])
fitness = fitness[b]
delta = -2*(fitness - self.gbest.fitness * scale)
_cov = self.minimize1(dim, theta, delta)
_cov = self.minimize2(dim, theta, delta)
return self.gbest.position, _cov
def minimize1(self, dim, theta, delta):
p0Cor = numpy.random.uniform(-1,1,dim**2).reshape(dim, dim)
p0Cor = p0Cor - numpy.diag(p0Cor) + numpy.identity(dim)
p0 = reverse(dim, numpy.identity(dim), numpy.ones(dim)/20)
popt, _,infodict,mesg,_ = leastsq(errfunc, p0, args=(theta, delta, self.gbest.position),full_output=True)
print(mesg)
ss_err=(infodict['fvec']**2).sum()
ss_tot=((delta-delta.mean())**2).sum()
rsquared=1-(ss_err/ss_tot)
print("rsquared", rsquared)
corrm, var, mu = transform(dim, popt)
var = var * self.gbest.position
_cov = corr2cov(corrm, var)
print("used mu:", mu)
print("found _cov:\n", _cov)
sigma = numpy.sqrt(numpy.diag(_cov))
print( "=> found sigma:", sigma)
return _cov
def minimize2(self, dim, theta, delta):
cons = (
{'type': 'ineq',
'fun' : lambda x: bound(x)})
p0 = reverse(dim, numpy.identity(dim), numpy.ones(dim)*self.gbest.position/10)
res = minimize(errfunc2, p0, args=(theta, delta, self.gbest.position), constraints=cons,
method='SLSQP', options={'disp': True, "ftol":1e-10})
popt=res.x
corrm, var, mu = transform(dim, popt)
var = var * self.gbest.position
_cov = corr2cov(corrm, var)
print("used mu:", mu)
print("found _cov:\n", _cov)
sigma = numpy.sqrt(numpy.diag(_cov))
print( "=> found sigma:", sigma)
return _cov
def corr2cov(corrm, var):
dim = len(var)
covm = numpy.empty((dim,dim))
for i in range(len(corrm)):
for j in range(len(corrm)):
covm[i,j] = corrm[i,j]*var[i]*var[j]
return covm
def rescale(_cov, v, dim):
#rescaling
cov2 = numpy.empty((dim, dim))
for i in range(dim):
for j in range(dim):
cov2[i,j] = _cov[i,j] * v[i] * v[j]
return cov2
|