cosmoHammer package
Submodules
cosmoHammer.ChainContext module
- 
class 
cosmoHammer.ChainContext.ChainContext(parent, params)[source] 
Bases: object
Context holding a dict to store data and information durring the computation of the likelihood
- 
add(key, value)[source] 
Adds the value to the context using the key
| Parameters: | 
- key – string
key to use
 
- value – object
the value to store
 
 
 | 
- 
contains(key)[source] 
Checks if the key is in the context
| Parameters: | key – string
key to check | 
| Returns: | True if the key is in the context | 
- 
get(key, default=None)[source] 
Returns the value stored in the context at the key or the default value in the 
context doesn’t contain the key
| Parameters: | 
- key – string
key to use
 
- default – string
the default value to use if the key is not available
 
 
 | 
- 
getData()[source] 
Returns the data
| Returns: | The data of this context | 
- 
getParams()[source] 
Returns the currently processed parameters
| Returns: | The param of this context | 
- 
getParent()[source] 
Returns the parent
| Returns: | The parent chain of this context | 
- 
remove(key)[source] 
Removes the value from the context
| Parameters: | key – string
key to remove from the context | 
 
cosmoHammer.ConcurrentMpiCosmoHammerSampler module
- 
class 
cosmoHammer.ConcurrentMpiCosmoHammerSampler.ConcurrentMpiCosmoHammerSampler(threads=1, **kwargs)[source] 
Bases: cosmoHammer.MpiCosmoHammerSampler.MpiCosmoHammerSampler
A sampler implementation extending the mpi sampler in order to allow to 
distribute the computation with MPI and using multiprocessing on a single node.
| Parameters: | 
- threads – (optional)
The number of threads to use for parallelization. If 
threads == 1,
then the multiprocessing module is not used but if
threads > 1, then a Pool object is created 
- kwargs – key word arguments passed to the CosmoHammerSampler
 
 
 | 
 
cosmoHammer.Constants module
Some constants used by the samplers
 
cosmoHammer.CosmoHammerSampler module
- 
class 
cosmoHammer.CosmoHammerSampler.CosmoHammerSampler(params, likelihoodComputationChain, filePrefix, walkersRatio, burninIterations, sampleIterations, stopCriteriaStrategy=None, initPositionGenerator=None, storageUtil=None, threadCount=1, reuseBurnin=False, logLevel=20, pool=None)[source] 
Bases: object
A complete sampler implementation taking care of correct setup, chain burn in and sampling.
| Parameters: | 
- params – the parameter of the priors
 
- likelihoodComputationChain – the callable computation chain
 
- filePrefix – the prefix for the log and output files
 
- walkersRatio – the ratio of walkers and the count of sampled parameters
 
- burninIterations – number of iteration for burn in
 
- sampleIterations – number of iteration to sample
 
- stopCriteriaStrategy – the strategy to stop the sampling. 
Default is None an then IterationStopCriteriaStrategy is used
 
- initPositionGenerator – the generator for the init walker position. 
Default is None an then SampleBallPositionGenerator is used
 
- storageUtil – util used to store the results
 
- threadCount – The count of threads to be used for the computation. Default is 1
 
- reuseBurnin – Flag if the burn in should be reused. 
If true the values will be read from the file System. Default is False
 
 
 | 
- 
createEmceeSampler(callable, **kwargs)[source] 
Factory method to create the emcee sampler
- 
createInitPos()[source] 
Factory method to create initial positions
- 
createInitPositionGenerator()[source] 
Returns a new instance of a Init Position Generator
- 
createSampleFileUtil()[source] 
Returns a new instance of a File Util
- 
createStopCriteriaStrategy()[source] 
Returns a new instance of a stop criteria stategy
- 
getChain()[source] 
Returns the sample chain
- 
isMaster()[source] 
Returns True. Can be overridden for multitasking i.e. with MPI
- 
loadBurnin()[source] 
loads the burn in form the file system
- 
log(message, level=20)[source] 
Logs a message to the logfile
- 
paramValues 
- 
paramWidths 
- 
resetSampler()[source] 
Resets the emcee sampler in the master node
- 
sample(burninPos, burninProb=None, burninRstate=None, datas=None)[source] 
Starts the sampling process
- 
sampleBurnin(p0)[source] 
Run the emcee sampler for the burnin to create walker which are independent form their starting position
- 
startSampleBurnin()[source] 
Runs the sampler for the burn in
- 
startSampling()[source] 
Launches the sampling
 
cosmoHammer.LikelihoodComputationChain module
- 
class 
cosmoHammer.LikelihoodComputationChain.LikelihoodComputationChain(min=None, max=None)[source] 
Bases: object
Implementation of a likelihood computation chain.
- 
addCoreModule(module)[source] 
adds a module to the likelihood module list
| Parameters: | module – callable
the callable module to add for the computation of the data | 
- 
addLikelihoodModule(module)[source] 
adds a module to the likelihood module list
| Parameters: | module – callable
the callable module to add for the likelihood computation | 
- 
computeLikelihoods(ctx)[source] 
Computes the likelihoods by iterating thru all the modules.
Sums up the log likelihoods.
- 
createChainContext(p)[source] 
Returns a new instance of a chain context
- 
getCoreModules()[source] 
pointer to the likelihood module list
- 
getLikelihoodModules()[source] 
pointer to the core module list
- 
invokeCoreModule(coreModule, ctx)[source] 
Invokes the given module with the given ChainContext
- 
invokeCoreModules(ctx)[source] 
Iterates thru the core modules and invokes them
- 
invokeLikelihoodModule(likelihoodModule, ctx)[source] 
Invokes the given module with the given ChainContext
- 
isValid(p)[source] 
checks if the given parameters are valid
- 
setup()[source] 
sets up the chain and its modules
 
cosmoHammer.MpiCosmoHammerSampler module
- 
class 
cosmoHammer.MpiCosmoHammerSampler.MpiCosmoHammerSampler(**kwargs)[source] 
Bases: cosmoHammer.CosmoHammerSampler.CosmoHammerSampler
A sampler implementation extending the regular sampler in order to allow for distributing 
the computation with MPI.
| Parameters: | kwargs – key word arguments passed to the CosmoHammerSampler | 
- 
createInitPos()[source] 
Factory method to create initial positions
- 
createSampleFileUtil()[source] 
Returns a new instance of a File Util
- 
isMaster()[source] 
Returns true if the rank is 0
- 
loadBurnin()[source] 
loads the burn in form the file system
- 
sample(burninPos, burninProb, burninRstate, datas)[source] 
Starts the sampling process. The master node (mpi rank = 0) persists the result to the disk
- 
sampleBurnin(p0)[source] 
Starts the sampling process. The master node (mpi rank = 0) persists the result to the disk
 
cosmoHammer.exceptions module
- 
exception 
cosmoHammer.exceptions.InvalidLikelihoodException(params=None)[source] 
Bases: cosmoHammer.exceptions.LikelihoodComputationException
Exception for invalid likelihoods e.g. -loglike >= 0.0
- 
exception 
cosmoHammer.exceptions.LikelihoodComputationException[source] 
Bases: exceptions.Exception
Exception for likelihood computation
 
Module contents
- 
cosmoHammer.getLogger()[source]