Coverage for estats/stats/CrossStarletL1NormDi.py: 16%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# Copyright (C) 2019 ETH Zurich
2# Institute for Particle Physics and Astrophysics
3# Author: Dominik Zuercher
5import numpy as np
6import healpy as hp
7from astropy.stats import mad_std
10def context():
11 """
12 Defines the paramters used by the plugin
13 """
14 stat_type = 'convergence-cross'
16 required = ['Starlet_L1_steps', 'Starlet_scalesDi',
17 'Starlet_L1_selected_scalesDi',
18 'Starlet_L1_sliced_bins', 'NSIDE',
19 'min_SL1_SNR', 'max_SL1_SNR']
20 defaults = [1000, [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],
21 [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],
22 15, 1024, -4., 4.]
23 types = ['int', 'list', 'list', 'int', 'int',
24 'float', 'float']
25 return required, defaults, types, stat_type
28def CrossStarletL1NormDi(map_w, weights, ctx):
29 """
30 Performs Starlet decompostion of map and calculates the L1 norm of
31 each filter band. Uses the dyadic scheme.
32 :param map: A Healpix convergence map
33 :param weights: A Healpix map with pixel weights
34 :param ctx: Context instance
35 :return: Starlet L1 norm (num filter bands * Starlet_steps)
36 """
38 try:
39 from esd import esd
40 except ImportError:
41 raise ImportError(
42 "Did not find esd package. "
43 "It is required for this module to work properly. "
44 "Download from: "
45 "https://cosmo-gitlab.phys.ethz.ch/cosmo_public/esd")
47 l1_coll = np.zeros((len(ctx['Starlet_scalesDi']),
48 ctx['Starlet_L1_steps'] + 1))
50 # noise map to estimate std of wavelet coeffs
51 std = mad_std(map_w[map_w > hp.UNSEEN])
52 rands = np.random.randn(np.sum(map_w > hp.UNSEEN))
53 noise_map = np.full(map_w.size, hp.UNSEEN)
54 noise_map[map_w > hp.UNSEEN] = rands
56 # generators for wavelet decompositions
57 wave_iter = esd.calc_wavelet_decomp_iter(
58 map_w, l_bins=ctx['Starlet_scalesDi'])
59 noise_iter = esd.calc_wavelet_decomp_iter(
60 noise_map, l_bins=ctx['Starlet_scalesDi'])
62 counter = 0
63 for ii, maps in enumerate(zip(wave_iter, noise_iter)):
64 if ii == 0:
65 continue
67 wmap = maps[0]
68 nmap = maps[1]
70 # redo masking
71 wmap = wmap[weights > 0.0]
72 nmap = nmap[weights > 0.0]
74 noise_est = np.std(nmap) * std
75 snr = wmap / noise_est
76 minimum = np.min(snr)
77 maximum = np.max(snr)
79 thresholds_snr = np.linspace(minimum, maximum,
80 ctx['Starlet_L1_steps'] - 1)
81 digitized = np.digitize(snr, thresholds_snr)
82 snr_abs = np.abs(snr)
83 bin_l1_norm = [np.sum(snr_abs[digitized == i])
84 for i in range(1, len(thresholds_snr))]
86 # append min, max and std of the map
87 bin_l1_norm = np.hstack((np.asarray([minimum]),
88 bin_l1_norm, np.asarray([maximum]),
89 np.asarray([std])))
90 bin_l1_norm = bin_l1_norm.reshape(1, bin_l1_norm.size)
91 l1_coll[counter] = bin_l1_norm
92 counter += 1
93 return l1_coll
96def process(data, ctx, scale_to_unity=False):
97 # backwards compatibility for data without map std
98 if data.shape[1] > ctx['Starlet_L1_steps']:
99 data = data[:, :-1]
101 num_of_scales = len(ctx['Starlet_scalesDi'])
103 new_data = np.zeros(
104 (int(data.shape[0] / num_of_scales), data.shape[1]
105 * num_of_scales))
106 for jj in range(int(data.shape[0] / num_of_scales)):
107 new_data[jj, :] = data[jj * num_of_scales:
108 (jj + 1) * num_of_scales, :].ravel()
109 return new_data
112def slice(ctx):
113 # number of datavectors for each scale
114 mult = 1
115 # number of scales
116 num_of_scales = len(ctx['Starlet_scalesDi'])
117 # either mean or sum, for how to assemble the data into the bins
118 operation = 'sum'
120 n_bins_sliced = ctx['Starlet_L1_sliced_bins']
122 # if True assumes that first and last entries of the data vector indicate
123 # the upper and lower boundaries and that binning scheme indicates
124 # bin edges rather than their indices
125 range_mode = True
127 return num_of_scales, n_bins_sliced, operation, mult, range_mode
130def decide_binning_scheme(data, meta, bin, ctx):
131 num_of_scales = len(ctx['Starlet_scalesDi'])
132 n_bins_original = ctx['Starlet_L1_steps']
133 n_bins_sliced = ctx['Starlet_L1_sliced_bins']
135 # get the correct tomographic bins
136 bin_idx = np.zeros(meta.shape[0], dtype=bool)
137 bin_idx[np.where(meta[:, 0] == bin)[0]] = True
138 bin_idx = np.repeat(bin_idx, meta[:, 1].astype(int))
139 data = data[bin_idx, :]
141 # Get bins for each smooting scale
142 bin_centers = np.zeros((num_of_scales, n_bins_sliced))
143 bin_edges = np.zeros((num_of_scales, n_bins_sliced + 1))
144 for scale in range(num_of_scales):
145 # cut correct scale and minimum and maximum kappa values
146 data_act = data[:,
147 n_bins_original * scale:n_bins_original * (scale + 1)]
148 minimum = np.max(data_act[:, 0])
149 maximum = np.min(data_act[:, -1])
150 new_kappa_bins = np.linspace(minimum, maximum, n_bins_sliced + 1)
151 bin_edges[scale, :] = new_kappa_bins
153 bin_centers_act = new_kappa_bins[:-1] + 0.5 * \
154 (new_kappa_bins[1:] - new_kappa_bins[:-1])
155 bin_centers[scale, :] = bin_centers_act
156 return bin_edges, bin_centers
159def filter(ctx):
160 filter = np.zeros(0)
161 for scale in reversed(ctx['Starlet_scalesDi']):
162 if scale in ctx['Starlet_L1_selected_scalesDi']:
163 f = [True] * \
164 ctx['Starlet_L1_sliced_bins']
165 f = np.asarray(f)
166 else:
167 f = [False] * \
168 ctx['Starlet_L1_sliced_bins']
169 f = np.asarray(f)
170 filter = np.append(filter, f)
171 return filter