Coverage for estats/stats/CrossStarletVoids.py: 20%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# Copyright (C) 2019 ETH Zurich
2# Institute for Particle Physics and Astrophysics
3# Author: Dominik Zuercher
5import numpy as np
6import healpy as hp
7from estats.stats import CrossVoids
10def context():
11 """
12 Defines the paramters used by the plugin
13 """
14 stat_type = 'convergence-cross'
16 required = ['Starlet_steps', 'Starlet_scales', 'Starlet_selected_scales',
17 'void_upper_threshold', 'Starlet_sliced_bins', 'NSIDE',
18 'min_count', 'SNR_voids',
19 'min_SNR']
20 defaults = [1000, [48, 65, 89, 121, 164, 223, 303, 412, 560,
21 761, 1034, 1405, 1910, 2597, 3530,
22 4799, 6523, 8867, 12053, 16384],
23 [48, 65, 89, 121, 164,
24 223, 303, 412, 560,
25 761, 1034, 1405, 1910, 2597, 3530,
26 4799, 6523, 8867, 12053, 16384],
27 -2.5, 15, 1024, 30, False, -100.]
28 types = ['int', 'list', 'list', 'float', 'int', 'int',
29 'int', 'bool', 'float']
30 return required, defaults, types, stat_type
33def CrossStarletVoids(map_w, weights, ctx):
34 """
35 Performs the starlet-wavelet decomposition of map and counts the local
36 maxima in each filter band.
37 :param map: A Healpix convergence map
38 :param weights: A Healpix map with pixel weights (integer >=0)
39 :param ctx: Context instance
40 :return: Starlet counts (num filter bands, Starlet_steps + 1)
41 """
43 try:
44 from esd import esd
45 except ImportError:
46 raise ImportError(
47 "Did not find esd package. "
48 "It is required for this module to work properly. "
49 "Download from: "
50 "https://cosmo-gitlab.phys.ethz.ch/cosmo_public/esd")
52 # build decomposition
53 # (remove first map that contains remaining small scales)
54 wavelet_counts = np.zeros((len(ctx['Starlet_scales']),
55 ctx['Starlet_steps'] + 1))
57 # count peaks in each filter band
58 wave_iter = esd.calc_wavelet_decomp_iter(
59 map_w, l_bins=ctx['Starlet_scales'])
60 counter = 0
61 for ii, wmap in enumerate(wave_iter):
62 if ii == 0:
63 continue
65 # reapply mask
66 wmap[np.isclose(weights, 0)] = hp.UNSEEN
68 void_vals = CrossVoids.CrossVoids(wmap, weights, ctx)
69 wavelet_counts[counter] = void_vals
70 counter += 1
72 return wavelet_counts
75def process(data, ctx, scale_to_unity=False):
76 # backwards compatibility for data without map std
77 if data.shape[1] > ctx['Starlet_steps']:
78 data = data[:, :-1]
80 num_of_scales = len(ctx['Starlet_scales'])
82 new_data = np.zeros(
83 (int(data.shape[0] / num_of_scales), data.shape[1]
84 * num_of_scales))
85 for jj in range(int(data.shape[0] / num_of_scales)):
86 new_data[jj, :] = data[jj * num_of_scales:
87 (jj + 1) * num_of_scales, :].ravel()
88 return new_data
91def slice(ctx):
92 # number of datavectors for each scale
93 mult = 1
94 # number of scales
95 num_of_scales = len(ctx['Starlet_scales'])
96 # either mean or sum, for how to assemble the data into the bins
97 operation = 'sum'
99 n_bins_sliced = ctx['Starlet_sliced_bins']
101 # if True assumes that first and last entries of the data vector indicate
102 # the upper and lower boundaries and that binning scheme indicates
103 # bin edges rather than their indices
104 range_mode = True
106 return num_of_scales, n_bins_sliced, operation, mult, range_mode
109def decide_binning_scheme(data, meta, bin, ctx):
110 num_of_scales = len(ctx['Starlet_scales'])
111 n_bins_original = ctx['Starlet_steps']
112 n_bins_sliced = ctx['Starlet_sliced_bins']
114 # get the correct tomographic bins
115 bin_idx = np.zeros(meta.shape[0], dtype=bool)
116 bin_idx[np.where(meta[:, 0] == bin)[0]] = True
117 bin_idx = np.repeat(bin_idx, meta[:, 1].astype(int))
118 data = data[bin_idx, :]
120 # Get bins for each smooting scale
121 bin_centers = np.zeros((num_of_scales, n_bins_sliced))
122 bin_edges = np.zeros((num_of_scales, n_bins_sliced + 1))
123 for scale in range(num_of_scales):
124 # cut correct scale and minimum and maximum kappa values
125 data_act = data[:,
126 n_bins_original * scale:n_bins_original * (scale + 1)]
127 minimum = np.max(data_act[:, 0])
128 maximum = np.min(data_act[:, -1])
129 new_kappa_bins = np.linspace(minimum, maximum, n_bins_sliced + 1)
130 bin_edges[scale, :] = new_kappa_bins
132 bin_centers_act = new_kappa_bins[:-1] + 0.5 * \
133 (new_kappa_bins[1:] - new_kappa_bins[:-1])
134 bin_centers[scale, :] = bin_centers_act
135 return bin_edges, bin_centers
138def filter(ctx):
139 filter = np.zeros(0)
140 for scale in reversed(ctx['Starlet_scales']):
141 if scale in ctx['Starlet_selected_scales']:
142 f = [True] * \
143 ctx['Starlet_sliced_bins']
144 f = np.asarray(f)
145 else:
146 f = [False] * \
147 ctx['Starlet_sliced_bins']
148 f = np.asarray(f)
149 filter = np.append(filter, f)
150 return filter