Coverage for src/galsbi/galsbi.py: 99%

139 statements  

« prev     ^ index     » next       coverage.py v7.8.0, created at 2025-04-03 17:18 +0000

1# Copyright (C) 2024 ETH Zurich 

2# Institute for Particle Physics and Astrophysics 

3# Author: Silvan Fischbacher 

4# created: Thu Aug 08 2024 

5 

6import contextlib 

7import importlib 

8 

9from astropy.io import fits 

10from astropy.table import Table 

11from cosmic_toolbox import arraytools as at 

12from cosmic_toolbox import logger 

13from ufig import run_util 

14 

15from . import citations, load 

16 

17LOGGER = logger.get_logger(__name__) 

18 

19 

20class GalSBI: 

21 """ 

22 This class is the main interface to the model. It provides methods to generate 

23 mock galaxy catalogs and to cite the model. 

24 """ 

25 

26 def __init__(self, name, verbosity="info"): 

27 """ 

28 :param name: name of the model to use 

29 :param verbosity: verbosity level of the logger, either "debug", "info", 

30 "warning", "error" or "critical" 

31 """ 

32 self.name = name 

33 self.mode = None 

34 self.filters = None 

35 self.verbosity = verbosity 

36 

37 def generate_catalog( 

38 self, 

39 mode="intrinsic", 

40 config_file=None, 

41 model_index=0, 

42 file_name="GalSBI_sim", 

43 verbosity=None, 

44 **kwargs, 

45 ): 

46 """ 

47 Generates a mock galaxy catalog using the model and configuration specified. The 

48 parameter model_index is used to select a specific set of model parameters from 

49 the ABC posterior. If a list of model parameters is provided, catalogs are 

50 generated for each set of parameters. The saved catalogs and images are named 

51 according to the file_name and model_index. 

52 

53 Names of the files 

54 ------------------ 

55 Intrinsic ucat galaxy catalog: f"{file_name}_{index}_{band}_ucat.gal.cat" 

56 Intrinsic ucat star catalog: f"{file_name}_{index}_{band}_ucat.star.cat" 

57 Output catalog: f"{file_name}_{index}_{band}_se.cat" 

58 Output image: f"{file_name}_{index}_{band}_image.fits" 

59 Segmentation map: f"{file_name}_{index}_{band}_se_seg.h5" 

60 Background map: f"{file_name}_{index}_{band}_se_bkg.h5" 

61 

62 :param mode: mode to use for generating the catalog, either "intrinsic", "emu", 

63 "image", "image+SE", "config_file" 

64 :param config_file: dictionary or path to a configuration file to use for 

65 generating the catalog (only used if mode="config_file") 

66 :param model_index: index of the model parameters to use for generating the 

67 catalog 

68 :param file_name: filename of the catalog and images to generate 

69 :param verbosity: verbosity level of the logger, either "debug", "info", 

70 "warning", "error" or "critical" 

71 :param kwargs: additional keyword arguments to pass to the workflow (overwrites 

72 the values from the model parameters and config file) 

73 """ 

74 if verbosity is not None: 

75 self.verbosity = verbosity 

76 logger.set_all_loggers_level(self.verbosity) 

77 self.mode = mode 

78 model_parameters = load.load_abc_posterior(self.name) 

79 config = load.load_config(self.name, mode, config_file) 

80 

81 if isinstance(model_index, int): 

82 model_index = [model_index] 

83 for index in model_index: 

84 LOGGER.info( 

85 "Generating catalog for model" 

86 f" {self.name} and mode {mode} with index {index}" 

87 ) 

88 kwargs["galaxy_catalog_name_format"] = ( 

89 f"{file_name}_{index}_{ } { } _ucat.gal.cat" 

90 ) 

91 kwargs["star_catalog_name_format"] = ( 

92 f"{file_name}_{index}_{ } { } _ucat.star.cat" 

93 ) 

94 kwargs["sextractor_forced_photo_catalog_name_format"] = ( 

95 f"{file_name}_{index}_{ } { } _se.cat" 

96 ) 

97 kwargs["image_name_format"] = f"{file_name}_{index}_{ } { } _image.fits" 

98 kwargs["tile_name"] = "" 

99 self.catalog_name = file_name 

100 self._run(config, model_parameters[index], **kwargs) 

101 

102 __call__ = generate_catalog 

103 

104 def _run(self, config, model_parameters, **kwargs): 

105 """ 

106 Runs the workflow with the given configuration and model parameters 

107 

108 :param config: configuration to use for generating the catalog 

109 :param model_parameters: model parameters to use for generating the catalog 

110 :param kwargs: additional keyword arguments to pass to the workflow (overwrites 

111 the values from the model parameters and config file) 

112 """ 

113 kargs = {} 

114 for col in model_parameters.dtype.names: 

115 kargs[col] = model_parameters[col] 

116 if ("moffat_beta1" in model_parameters.dtype.names) and ( 

117 "moffat_beta2" in model_parameters.dtype.names 

118 ): 

119 kargs["psf_beta"] = [ 

120 model_parameters["moffat_beta1"][0], 

121 model_parameters["moffat_beta2"][0], 

122 ] 

123 kargs.update(kwargs) 

124 if "filters" in kargs: 

125 self.filters = kargs["filters"] 

126 else: 

127 config_module = importlib.import_module(config) 

128 self.filters = config_module.filters 

129 

130 run_util.run_ufig_from_config(config, **kargs) 

131 

132 def cite(self): 

133 """ 

134 Prints all the papers that should be cited when using the configuration 

135 specified 

136 """ 

137 print("\033[1mPlease cite the following papers\033[0m") 

138 print("=================================") 

139 print("\033[1mFor using the GalSBI model:\033[0m") 

140 citations.cite_galsbi_release() 

141 print("\033[1mFor using the galsbi python package:\033[0m") 

142 citations.cite_code_release(self.mode) 

143 print("") 

144 

145 print( 

146 "\033[1mFor the galaxy population model and redshift distribution:\033[0m" 

147 ) 

148 citations.cite_abc_posterior(self.name) 

149 print("") 

150 print("Example:") 

151 print("--------") 

152 print( 

153 "We use the GalSBI framework (PAPERS GalSBI release) to generate mock" 

154 " galaxy catalogs. The galaxy population model corresponds to the" 

155 " posterior from (PAPER model). (...) " 

156 "Acknowledgements: We acknowledge the use of the following software:" 

157 "(numpy), (scipy), (PAPERS code release), (...)" 

158 ) 

159 

160 def load_catalogs(self, output_format="rec", model_index=0, combine=False): 

161 """ 

162 Loads the catalogs generated by the model. 

163 

164 :param output_format: format of the output, either "rec", "df" or "fits" 

165 :param model_index: index of the model parameters to use for loading the 

166 catalogs 

167 :param combine: if True, combines the catalogs from all bands into a single 

168 catalog 

169 :return: catalogs in the specified format 

170 """ 

171 if self.filters is None: 

172 raise RuntimeError("please generate catalogs first") 

173 

174 if output_format == "rec": 

175 convert = lambda x: x # noqa: E731 

176 elif output_format == "df": 

177 convert = at.rec2pd 

178 elif output_format == "fits": 

179 convert = Table 

180 else: 

181 raise ValueError(f"Unknown output format {output_format}") 

182 

183 output = {} 

184 for band in self.filters: 

185 catalog_name = f"{self.catalog_name}_{model_index}_{band}_ucat.gal.cat" 

186 with contextlib.suppress(FileNotFoundError): 

187 output[f"ucat galaxies {band}"] = at.load_hdf(catalog_name) 

188 catalog_name = f"{self.catalog_name}_{model_index}_{band}_ucat.star.cat" 

189 with contextlib.suppress(FileNotFoundError): 

190 output[f"ucat stars {band}"] = at.load_hdf(catalog_name) 

191 catalog_name = f"{self.catalog_name}_{model_index}_{band}_se.cat" 

192 with contextlib.suppress(FileNotFoundError): 

193 output[f"sextractor {band}"] = at.load_hdf(catalog_name) 

194 if len(output) == 0: 

195 LOGGER.warning( 

196 "No catalogs found. Did you already generate catalogs? Does the " 

197 "model_index match the one used for generating the catalogs?" 

198 ) 

199 if not combine: 

200 catalogs = {key: convert(value) for key, value in output.items()} 

201 return catalogs 

202 

203 combined_catalogs = self._build_combined_catalogs(output) 

204 return {key: convert(value) for key, value in combined_catalogs.items()} 

205 

206 def load_images(self, model_index=0): 

207 """ 

208 Loads the images generated by the model. This include the actual image, 

209 the segmentation map and the background map. 

210 

211 param model_index: index of the model parameters to use for loading the images 

212 return: images as numpy arrays 

213 """ 

214 output = {} 

215 for band in self.filters: 

216 image_name = f"{self.catalog_name}_{model_index}_{band}_image.fits" 

217 try: 

218 hdul = fits.open(image_name) 

219 image = hdul[0].data 

220 hdul.close() 

221 output[f"image {band}"] = image 

222 except FileNotFoundError: 

223 pass 

224 segmap_name = f"{self.catalog_name}_{model_index}_{band}_se_seg.h5" 

225 with contextlib.suppress(FileNotFoundError): 

226 output[f"segmentation {band}"] = at.load_hdf_cols(segmap_name)[ 

227 "SEGMENTATION" 

228 ] 

229 bkgmap_name = f"{self.catalog_name}_{model_index}_{band}_se_bkg.h5" 

230 with contextlib.suppress(FileNotFoundError): 

231 output[f"background {band}"] = at.load_hdf_cols(bkgmap_name)[ 

232 "BACKGROUND" 

233 ] 

234 return output 

235 

236 def _build_combined_catalogs(self, catalogs): 

237 band_dep_params = ["int_mag", "mag", "abs_mag", "bkg_noise_amp"] 

238 combined_catalogs = {} 

239 filter = self.filters[0] 

240 if f"ucat galaxies {filter}" in catalogs: 

241 new_cat = {} 

242 for f in self.filters: 

243 cat = catalogs[f"ucat galaxies {f}"] 

244 for par in cat.dtype.names: 

245 if par not in band_dep_params: 

246 new_cat[par] = cat[par] 

247 else: 

248 new_cat[f"{par} {f}"] = cat[par] 

249 combined_catalogs["ucat galaxies"] = at.dict2rec(new_cat) 

250 if f"ucat stars {filter}" in catalogs: 

251 new_cat = {} 

252 for f in self.filters: 

253 cat = catalogs[f"ucat stars {f}"] 

254 for par in cat.dtype.names: 

255 if par not in band_dep_params: 

256 new_cat[par] = cat[par] 

257 else: 

258 new_cat[f"{par} {f}"] = cat[par] 

259 combined_catalogs["ucat stars"] = at.dict2rec(new_cat) 

260 if f"sextractor {filter}" in catalogs: 

261 band_ind_params = [ 

262 "dec", 

263 "ra", 

264 "z", 

265 "e1", 

266 "e2", 

267 "r50", 

268 "r50_arcsec", 

269 "r50_phys", 

270 "sersic_n", 

271 "galaxy_type", 

272 "id", 

273 "x", 

274 "y", 

275 ] 

276 new_cat = {} 

277 for f in self.filters: 

278 cat = catalogs[f"sextractor {f}"] 

279 for par in cat.dtype.names: 

280 if par in band_ind_params: 

281 new_cat[par] = cat[par] 

282 else: 

283 new_cat[f"{par} {f}"] = cat[par] 

284 combined_catalogs["sextractor"] = at.dict2rec(new_cat) 

285 return combined_catalogs