Coverage for src/galsbi/galsbi.py: 98%

133 statements  

« prev     ^ index     » next       coverage.py v7.6.10, created at 2025-01-10 11:12 +0000

1# Copyright (C) 2024 ETH Zurich 

2# Institute for Particle Physics and Astrophysics 

3# Author: Silvan Fischbacher 

4# created: Thu Aug 08 2024 

5 

6import contextlib 

7import importlib 

8 

9from astropy.io import fits 

10from astropy.table import Table 

11from cosmic_toolbox import arraytools as at 

12from cosmic_toolbox import logger 

13from ufig import run_util 

14 

15from . import citations, load 

16 

17LOGGER = logger.get_logger(__name__) 

18 

19 

20class GalSBI: 

21 """ 

22 This class is the main interface to the model. It provides methods to generate 

23 mock galaxy catalogs and to cite the model. 

24 """ 

25 

26 def __init__(self, name): 

27 """ 

28 :param name: name of the model to use 

29 """ 

30 self.name = name 

31 self.mode = None 

32 self.filters = None 

33 

34 def generate_catalog( 

35 self, 

36 mode="intrinsic", 

37 config_file=None, 

38 model_index=0, 

39 file_name="GalSBI_sim", 

40 **kwargs, 

41 ): 

42 """ 

43 Generates a mock galaxy catalog using the model and configuration specified. The 

44 parameter model_index is used to select a specific set of model parameters from 

45 the ABC posterior. If a list of model parameters is provided, catalogs are 

46 generated for each set of parameters. The saved catalogs and images are named 

47 according to the file_name and model_index. 

48 

49 Names of the files 

50 ------------------ 

51 Intrinsic ucat galaxy catalog: f"{file_name}_{index}_{band}_ucat.gal.cat" 

52 Intrinsic ucat star catalog: f"{file_name}_{index}_{band}_ucat.star.cat" 

53 Output catalog: f"{file_name}_{index}_{band}_se.cat" 

54 Output image: f"{file_name}_{index}_{band}_image.fits" 

55 Segmentation map: f"{file_name}_{index}_{band}_se_seg.h5" 

56 Background map: f"{file_name}_{index}_{band}_se_bkg.h5" 

57 

58 :param mode: mode to use for generating the catalog, either "intrinsic", "emu", 

59 "image", "image+SE", "config_file" 

60 :param config_file: dictionary or path to a configuration file to use for 

61 generating the catalog (only used if mode="config_file") 

62 :param model_index: index of the model parameters to use for generating the 

63 catalog 

64 :param catalog_name: filename of the catalog and images to generate 

65 :param kwargs: additional keyword arguments to pass to the workflow (overwrites 

66 the values from the model parameters and config file) 

67 """ 

68 self.mode = mode 

69 model_parameters = load.load_abc_posterior(self.name) 

70 config = load.load_config(self.name, mode, config_file) 

71 

72 if isinstance(model_index, int): 

73 model_index = [model_index] 

74 for index in model_index: 

75 LOGGER.info( 

76 "Generating catalog for model" 

77 f" {self.name} and mode {mode} with index {index}" 

78 ) 

79 kwargs["galaxy_catalog_name_format"] = ( 

80 f"{file_name}_{index}_{ } { } _ucat.gal.cat" 

81 ) 

82 kwargs["star_catalog_name_format"] = ( 

83 f"{file_name}_{index}_{ } { } _ucat.star.cat" 

84 ) 

85 kwargs["sextractor_forced_photo_catalog_name_format"] = ( 

86 f"{file_name}_{index}_{ } { } _se.cat" 

87 ) 

88 kwargs["image_name_format"] = f"{file_name}_{index}_{ } { } _image.fits" 

89 kwargs["tile_name"] = "" 

90 self.catalog_name = file_name 

91 self._run(config, model_parameters[index], **kwargs) 

92 

93 __call__ = generate_catalog 

94 

95 def _run(self, config, model_parameters, **kwargs): 

96 """ 

97 Runs the workflow with the given configuration and model parameters 

98 

99 :param config: configuration to use for generating the catalog 

100 :param model_parameters: model parameters to use for generating the catalog 

101 :param kwargs: additional keyword arguments to pass to the workflow (overwrites 

102 the values from the model parameters and config file) 

103 """ 

104 kargs = {} 

105 for col in model_parameters.dtype.names: 

106 kargs[col] = model_parameters[col] 

107 if ("moffat_beta1" in model_parameters.dtype.names) and ( 

108 "moffat_beta2" in model_parameters.dtype.names 

109 ): 

110 kargs["psf_beta"] = [ 

111 model_parameters["moffat_beta1"][0], 

112 model_parameters["moffat_beta2"][0], 

113 ] 

114 kargs.update(kwargs) 

115 if "filters" in kargs: 

116 self.filters = kargs["filters"] 

117 else: 

118 config_module = importlib.import_module(config) 

119 self.filters = config_module.filters 

120 

121 run_util.run_ufig_from_config(config, **kargs) 

122 

123 def cite(self): 

124 """ 

125 Prints all the papers that should be cited when using the configuration 

126 specified 

127 """ 

128 print("\033[1mPlease cite the following papers\033[0m") 

129 print("=================================") 

130 print("\033[1mFor using the GalSBI model:\033[0m") 

131 citations.cite_galsbi_release() 

132 print("\033[1mFor using the galsbi python package:\033[0m") 

133 citations.cite_code_release(self.mode) 

134 print("") 

135 

136 print( 

137 "\033[1mFor the galaxy population model and redshift distribution:\033[0m" 

138 ) 

139 citations.cite_abc_posterior(self.name) 

140 print("") 

141 print("Example:") 

142 print("--------") 

143 print( 

144 "We use the GalSBI framework (PAPERS GalSBI release) to generate mock" 

145 " galaxy catalogs. The galaxy population model corresponds to the" 

146 " posterior from (PAPER model). (...) " 

147 "Acknowledgements: We acknowledge the use of the following software:" 

148 "(numpy), (scipy), (PAPERS code release), (...)" 

149 ) 

150 

151 def load_catalogs(self, output_format="rec", model_index=0, combine=False): 

152 """ 

153 Loads the catalogs generated by the model. 

154 

155 :param output_format: format of the output, either "rec", "df" or "fits" 

156 :param model_index: index of the model parameters to use for loading the 

157 catalogs 

158 :param combine: if True, combines the catalogs from all bands into a single 

159 catalog 

160 :return: catalogs in the specified format 

161 """ 

162 if self.filters is None: 

163 raise RuntimeError("please generate catalogs first") 

164 

165 if output_format == "rec": 

166 convert = lambda x: x # noqa: E731 

167 elif output_format == "df": 

168 convert = at.rec2pd 

169 elif output_format == "fits": 

170 convert = Table 

171 else: 

172 raise ValueError(f"Unknown output format {output_format}") 

173 

174 output = {} 

175 for band in self.filters: 

176 catalog_name = f"{self.catalog_name}_{model_index}_{band}_ucat.gal.cat" 

177 with contextlib.suppress(FileNotFoundError): 

178 output[f"ucat galaxies {band}"] = at.load_hdf(catalog_name) 

179 catalog_name = f"{self.catalog_name}_{model_index}_{band}_ucat.star.cat" 

180 with contextlib.suppress(FileNotFoundError): 

181 output[f"ucat stars {band}"] = at.load_hdf(catalog_name) 

182 catalog_name = f"{self.catalog_name}_{model_index}_{band}_se.cat" 

183 with contextlib.suppress(FileNotFoundError): 

184 output[f"sextractor {band}"] = at.load_hdf(catalog_name) 

185 

186 if not combine: 

187 catalogs = {key: convert(value) for key, value in output.items()} 

188 return catalogs 

189 

190 combined_catalogs = self._build_combined_catalogs(output) 

191 return {key: convert(value) for key, value in combined_catalogs.items()} 

192 

193 def load_images(self, model_index=0): 

194 """ 

195 Loads the images generated by the model. This include the actual image, 

196 the segmentation map and the background map. 

197 

198 param model_index: index of the model parameters to use for loading the images 

199 return: images as numpy arrays 

200 """ 

201 output = {} 

202 for band in self.filters: 

203 image_name = f"{self.catalog_name}_{model_index}_{band}_image.fits" 

204 try: 

205 hdul = fits.open(image_name) 

206 image = hdul[0].data 

207 hdul.close() 

208 output[f"image {band}"] = image 

209 except FileNotFoundError: 

210 pass 

211 segmap_name = f"{self.catalog_name}_{model_index}_{band}_se_seg.h5" 

212 with contextlib.suppress(FileNotFoundError): 

213 output[f"segmentation {band}"] = at.load_hdf_cols(segmap_name)[ 

214 "SEGMENTATION" 

215 ] 

216 bkgmap_name = f"{self.catalog_name}_{model_index}_{band}_se_bkg.h5" 

217 with contextlib.suppress(FileNotFoundError): 

218 output[f"background {band}"] = at.load_hdf_cols(bkgmap_name)[ 

219 "BACKGROUND" 

220 ] 

221 return output 

222 

223 def _build_combined_catalogs(self, catalogs): 

224 band_dep_params = ["int_mag", "mag", "abs_mag", "bkg_noise_amp"] 

225 combined_catalogs = {} 

226 filter = self.filters[0] 

227 if f"ucat galaxies {filter}" in catalogs: 

228 new_cat = {} 

229 for f in self.filters: 

230 cat = catalogs[f"ucat galaxies {f}"] 

231 for par in cat.dtype.names: 

232 if par not in band_dep_params: 

233 new_cat[par] = cat[par] 

234 else: 

235 new_cat[f"{par} {f}"] = cat[par] 

236 combined_catalogs["ucat galaxies"] = at.dict2rec(new_cat) 

237 if f"ucat stars {filter}" in catalogs: 

238 new_cat = {} 

239 for f in self.filters: 

240 cat = catalogs[f"ucat stars {f}"] 

241 for par in cat.dtype.names: 

242 if par not in band_dep_params: 

243 new_cat[par] = cat[par] 

244 else: 

245 new_cat[f"{par} {f}"] = cat[par] 

246 combined_catalogs["ucat stars"] = at.dict2rec(new_cat) 

247 if f"sextractor {filter}" in catalogs: 

248 band_ind_params = [ 

249 "dec", 

250 "ra", 

251 "z", 

252 "e1", 

253 "e2", 

254 "r50", 

255 "sersic_n", 

256 "galaxy_type", 

257 "id", 

258 "x", 

259 "y", 

260 ] 

261 new_cat = {} 

262 for f in self.filters: 

263 cat = catalogs[f"sextractor {f}"] 

264 for par in cat.dtype.names: 

265 if par in band_ind_params: 

266 new_cat[par] = cat[par] 

267 else: 

268 new_cat[f"{par} {f}"] = cat[par] 

269 combined_catalogs["sextractor"] = at.dict2rec(new_cat) 

270 return combined_catalogs