Coverage for src/galsbi/ucat/spectrum_util.py: 100%
39 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-10 11:12 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-10 11:12 +0000
1# Copyright (C) 2018 ETH Zurich, Institute for Particle Physics and Astrophysics
3"""
4Created on Mar 6, 2018
5author: Joerg Herbel
6"""
8import numpy as np
9import scipy.interpolate
12def spline_ext_coeff():
13 """
14 Perform the cubic spline interpolation described by
15 Fitzpatrick (1999, DOI: 10.1086/316293) to obtain the extinction law in the optical
16 and IR region (for wavelengths > 2700 Angstrom)
17 :return: spline object than can be evaluated at arbitrary inverse wavelengths
18 """
19 spline_x = (0.0, 0.377, 0.820, 1.667, 1.828, 2.141, 2.433, 3.704, 3.846)
20 spline_y = (0.0, 0.265, 0.829, 2.688, 3.055, 3.806, 4.315, 6.265, 6.591)
21 spline = scipy.interpolate.InterpolatedUnivariateSpline(spline_x, spline_y, k=3)
22 return spline
25def extinction_coefficient(lam, excess_b_v, spline):
26 """
27 Calculate the extinction coefficient as described in
28 Schlafly et. al. (2011, DOI: 10.1088/0004-637X/737/2/103). The extinction law is the
29 one given by Fitzpatrick (1999, DOI: 10.1086/316293), the extinction map is the one
30 presented in Schlegel et. al. (1998, DOI: 10.1086/305772).
31 :param lam: Wavelength in micrometre
32 :param excess_b_v: Excess E(B-V) in B-V color from the map provided by Schlegel et.
33 al. (1998, DOI: 10.1086/305772)
34 :param spline: Cubic spline for the optical and IR-region according to Fitzpatrick
35 (1999, DOI: 10.1086/316293)
36 :return: Extinction coefficient A_lambda evaluated at the input wavelengths.
37 """
39 def uv_extinction(x):
40 """
41 Extinction law for the UV-region (wavelengths < 2700 Angstrom) according to
42 Fitzpatrick (1999, DOI: 10.1086/316293)
43 :param x: Inverse wavelength in micrometre^-1
44 :return: A_lambda/E(B-V) evaluated at input inverse wavelengthss
45 """
47 def uv_curvature(x):
48 f = np.zeros_like(x)
49 mask = x >= 5.9
50 y = x[mask] - 5.9
51 f[mask] = 0.5392 * y**2 + 0.05644 * y**3
52 return f
54 r_v = 3.1
55 c_1 = 4.50777 - 14.184 / r_v
56 c_2 = -0.824 + 4.717 / r_v
57 c_3 = 3.23
58 c_4 = 0.41
59 gam = 0.99
60 x_0 = 4.596
62 x_sq = x**2
64 k = (
65 c_1
66 + c_2 * x
67 + c_3 * x_sq / ((x_sq - x_0**2) ** 2 + x_sq * gam**2)
68 + c_4 * uv_curvature(x)
69 )
71 return k + r_v
73 lam_inv = 1 / lam
74 uv_mask = (
75 lam_inv >= 1 / 0.27
76 ) # UV region is defined as all wavelengths <= 2700 Angstrom
78 ext_coeff = np.append(uv_extinction(lam_inv[uv_mask]), spline(lam_inv[~uv_mask]))[
79 np.newaxis, ...
80 ]
81 ext_coeff = (
82 ext_coeff * 0.78 * 1.32 * excess_b_v[..., np.newaxis] / spline(1)
83 ) # See Schlafly et. al. (2011, DOI: 10.1088/0004-637X/737/2/103), eq. (A1)
85 return ext_coeff
88def construct_intrinsic_spectrum(coeff, templates_amp):
89 """
90 :param templates_amp: (n_templates, n_lambda)
91 :param coeff: (n_gal, n_templates)
92 :return: (n_gal, n_lambda)
93 """
94 specrum = np.sum(coeff[..., np.newaxis] * templates_amp[np.newaxis, ...], axis=1)
95 return specrum
98def apply_extinction(spectrum, lam_obs, excess_b_v, extinction_spline):
99 """
100 :param spectrum: (n_gal, n_lambda)
101 :param lam_obs: (n_lambda,)
102 :param excess_b_v: (n_gal,)
103 :param extinction_spline:
104 """
105 spectrum *= 10 ** (
106 -2 / 5 * extinction_coefficient(lam_obs, excess_b_v, extinction_spline)
107 )
110def construct_reddened_spectrum(
111 lam_obs, templates_amp, coeff, excess_b_v, extinction_spline
112):
113 """
114 :param lam_obs: (n_lambda, )
115 :param templates_amp: (n_templates, n_lambda)
116 :param coeff: (n_gal, n_templates)
117 :param excess_b_v: (n_gal,)
118 :param extinction_spline:
119 :return: (n_gal, n_lambda)
120 """
121 spectrum = construct_intrinsic_spectrum(coeff, templates_amp)
122 apply_extinction(spectrum, lam_obs, excess_b_v, extinction_spline)
123 return spectrum