Coverage for src/galsbi/ucat/galaxy_population_models/galaxy_light_profile.py: 96%
50 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-10 11:12 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-10 11:12 +0000
1# Copyright (C) 2018 ETH Zurich, Institute for Particle Physics and Astrophysics
3"""
4Created 2021
5author: Tomasz Kacprzak
6"""
8from warnings import warn
10import numpy as np
11from scipy.stats import betaprime
13##########################################################
14#
15# Sampling sersic
16#
17##########################################################
20def sample_sersic_berge(numgalaxies, int_mag, par):
21 """
22 Sample the Sersic index-distribution parametrized as described in (Berge et al.
23 2013)
25 :param numgalaxies: number of galaxies, i.e. number of samples
26 :param int_mag: intrinsic, unmagnified magnitude of all galaxies
27 :param par: ctx.parameters; part of ctx containing parameters
28 :return: Sersic index
29 """
31 sersic_n = np.zeros(numgalaxies, dtype=par.catalog_precision)
33 while np.any(sersic_n <= 0) or np.any(sersic_n > 10):
34 index = np.where((int_mag < 20) & ((sersic_n <= 0) | (sersic_n > 10)))[0]
36 if index.size > 0:
37 sersic_n_temp = np.zeros_like(sersic_n[index])
38 midpoint = index.size // 2
39 rest = index.size % 2
40 sersic_n_temp[:midpoint] = (
41 np.exp(
42 np.random.normal(
43 par.sersic_n_mean_1_hi, par.sersic_n_sigma_1_hi, size=midpoint
44 )
45 )
46 + np.ones_like(midpoint) * par.sersic_n_offset
47 )
49 sersic_n_temp[midpoint:] = (
50 np.exp(
51 np.random.normal(
52 par.sersic_n_mean_2_hi,
53 par.sersic_n_sigma_2_hi,
54 size=midpoint + rest,
55 )
56 )
57 + np.ones_like(midpoint + rest) * par.sersic_n_offset
58 )
60 sersic_n[index] = np.random.permutation(sersic_n_temp).copy()
62 index = (int_mag >= 20) & ((sersic_n <= 0) | (sersic_n > 10))
64 if np.any(index):
65 sersic_n[index] = (
66 np.exp(
67 np.random.normal(
68 par.sersic_n_mean_low,
69 par.sersic_n_sigma_low,
70 size=np.sum(index),
71 )
72 )
73 + np.ones_like(np.sum(index)) * par.sersic_n_offset
74 )
76 return sersic_n
79def sample_sersic_betaprime(n_gal, mode, size, alpha=0, z=0.0, min_n=0.2, max_n=5.0):
80 """
81 Sample the Sersic index-distribution parametrized as described in (Moser et al.
82 2024). The parameter mode corresponds to the mode of the distribution, the size
83 parameter is responsible for the scatter (with larger size the distribution becomes
84 tighter). The alpha parameter is responsible for the redshift dependence of the
85 mode. This was first introduced in Fischbacher et al. 2024.
87 :param n_gal: number of galaxies, i.e. number of samples
88 :param mode: mode of the distribution
89 :param size: size of the distribution (with larger size the distribution becomes
90 tighter)
91 :param alpha: redshift dependence of the mode
92 :param z: redshift
93 :param min_n: minimum Sersic index, raise exception if the sampled value is below
94 this value
95 :param max_n: maximum Sersic index, raise exception if the sampled value is above
96 this value
97 :return: Sersic index
98 """
99 sersic_n = np.zeros(n_gal)
100 mode_z = mode * (1 + z) ** alpha
101 betaprime_a = mode_z * (size + 1) + 1
102 betaprime_b = size
103 sersic_n[:] = betaprime.rvs(a=betaprime_a, b=betaprime_b, size=n_gal)
104 n_iter_max = 10 * n_gal
105 for _ in range(n_iter_max):
106 mask = (sersic_n > max_n) | (sersic_n < min_n)
107 if np.any(mask):
108 if isinstance(betaprime_a, np.ndarray):
109 a = betaprime_a[mask]
110 else:
111 a = betaprime_a
112 sersic_n[mask] = betaprime.rvs(
113 a=a, b=betaprime_b, size=np.count_nonzero(mask)
114 )
115 else:
116 return sersic_n
118 raise RuntimeError(
119 "Failed to get valid sersic indices after"
120 f" {n_iter_max} iterations for mode {mode} and alpha {alpha}"
121 )
124def sample_sersic_for_galaxy_type(n_gal, galaxy_type, app_mag, par, z=0.0):
125 # Backward compability
126 if par.sersic_sampling_method == "default":
127 warn(
128 DeprecationWarning(
129 "sersic_sampling_method=default is deprecated, using berge instead"
130 ),
131 stacklevel=1,
132 )
133 par.sersic_sampling_method = "berge"
135 if par.sersic_sampling_method == "berge":
136 sersic_n = sample_sersic_berge(n_gal, app_mag, par).astype(
137 par.catalog_precision
138 )
140 elif par.sersic_sampling_method == "blue_red_fixed":
141 assert galaxy_type in [
142 "blue",
143 "red",
144 ], f"sersic index for galaxy_type {galaxy_type} not implemented"
146 sersic_n = np.full(
147 n_gal,
148 fill_value=getattr(par, f"sersic_index_{galaxy_type}"),
149 dtype=par.catalog_precision,
150 )
152 elif par.sersic_sampling_method == "single":
153 sersic_n = np.full(
154 n_gal, fill_value=par.sersic_single_value, dtype=par.catalog_precision
155 )
157 elif par.sersic_sampling_method == "blue_red_betaprime":
158 assert galaxy_type in [
159 "blue",
160 "red",
161 ], f"sersic index for galaxy_type {galaxy_type} not implemented"
163 sersic_n = sample_sersic_betaprime(
164 n_gal=n_gal,
165 mode=getattr(par, f"sersic_betaprime_{galaxy_type}_mode"),
166 size=getattr(par, f"sersic_betaprime_{galaxy_type}_size"),
167 alpha=getattr(par, f"sersic_betaprime_{galaxy_type}_mode_alpha"),
168 z=z,
169 min_n=par.sersic_n_min,
170 max_n=par.sersic_n_max,
171 )
173 else:
174 raise ValueError("unknown sersic_sampling_method {par.sersic_sampling_method}")
176 return sersic_n.astype(par.catalog_precision)