Coverage for src/galsbi/ucat/galaxy_population_models/galaxy_sed.py: 98%

55 statements  

« prev     ^ index     » next       coverage.py v7.6.10, created at 2025-01-10 11:12 +0000

1# Copyright (C) 2018 ETH Zurich, Institute for Particle Physics and Astrophysics 

2 

3""" 

4Created 2021 

5author: Tomasz Kacprzak 

6""" 

7 

8from collections import OrderedDict 

9 

10import numpy as np 

11 

12########################################################## 

13# 

14# Sampling templates 

15# 

16########################################################## 

17 

18 

19def dirichlet_alpha_ev(z, alpha0, alpha1, z1): 

20 f = np.expand_dims(z, axis=-1) / z1 

21 alpha = alpha0 ** (1 - f) * alpha1**f 

22 return alpha 

23 

24 

25def draw_dirichlet_add_weight(alpha, weight): 

26 samples = alpha # Modifies alpha in-place 

27 

28 for i in range(alpha.shape[1]): 

29 samples[:, i] = np.random.gamma(alpha[:, i], scale=1) 

30 

31 samples /= np.sum(samples, axis=1, keepdims=True) 

32 

33 samples *= weight 

34 

35 return samples 

36 

37 

38def sample_template_coeff_dirichlet__alpha_mode( 

39 z, amode0, amode1, z1, weight, alpha0_std, alpha1_std 

40): 

41 """ 

42 Samples template coefficients from redshift-dependent Dirichlet distributions. 

43 See also docs/jupyter_notebooks/coeff_distribution_dirichlet.ipynb. 

44 Then the alpha0 and alpha1 will be scaled such that std(alpha)=alpha_std, 

45 for a equal alphas. alpha_std is also interpolated between redshifts. 

46 """ 

47 

48 def dir_mode_to_alpha(amode, sigma): 

49 assert np.allclose(np.sum(amode, axis=1), 1), "dirichlet amode must sum to 1" 

50 K = amode.shape[1] 

51 ms = 1 / sigma**2 * (1 / K - 1 / K**2) - K - 1 

52 alpha = 1 + amode * ms 

53 return alpha 

54 

55 def dir_mode(alpha): 

56 return (alpha - 1) / (np.sum(alpha) - len(alpha)) 

57 

58 def get_max_sigma(k): 

59 return np.sqrt((1 / k - 1 / k**2) / (k + 1)) 

60 

61 # check alpha mode and interpolate in redshift 

62 for amode_ in (amode0, amode1): 

63 assert np.allclose( 

64 np.sum(amode_), 1 

65 ), "dirichlet amode coefficients must sum to 1" 

66 amode = dirichlet_alpha_ev(z, amode0, amode1, z1) 

67 amode /= np.sum(amode, axis=1, keepdims=True) 

68 

69 # get maximum allowed sigma for given number of dimensions 

70 K = amode.shape[1] 

71 max_sig = get_max_sigma(K) 

72 

73 # check standard deviation of alpha and interpolate 

74 for alpha_std_ in (alpha0_std, alpha1_std): 

75 assert alpha_std_ > 0, "dirichlet alpha_std must be >0" 

76 assert ( 

77 alpha_std_ < max_sig 

78 ), f"dirichlet alpha0_std must be < max_sig for K={K} {max_sig:2.3e}" 

79 alpha_std = dirichlet_alpha_ev(z, alpha0_std, alpha1_std, z1) 

80 alpha_std = np.clip(alpha_std, a_min=1e-4, a_max=max_sig - 1e-4) 

81 

82 # convert to Dirichlet alpha 

83 alpha = dir_mode_to_alpha(amode, alpha_std) 

84 

85 # finally, draw the samples 

86 samples = draw_dirichlet_add_weight(alpha, weight) 

87 

88 return samples 

89 

90 

91def sample_template_coeff_dirichlet(z, alpha0, alpha1, z1, weight): 

92 """ 

93 Samples template coefficients from redshift-dependent Dirichlet distributions. 

94 See also docs/jupyter_notebooks/coeff_distribution_dirichlet.ipynb. 

95 """ 

96 

97 alpha = dirichlet_alpha_ev(z, alpha0, alpha1, z1) 

98 

99 samples = draw_dirichlet_add_weight(alpha, weight) 

100 

101 return samples 

102 

103 

104def sample_template_coeff_lumfuncs(par, redshift_z, n_templates): 

105 template_coeffs = OrderedDict() 

106 for g in redshift_z: 

107 z = redshift_z[g] 

108 alpha0 = np.array( 

109 [getattr(par, f"template_coeff_alpha0_{g}_{i}") for i in range(n_templates)] 

110 ) 

111 alpha1 = np.array( 

112 [getattr(par, f"template_coeff_alpha1_{g}_{i}") for i in range(n_templates)] 

113 ) 

114 z1 = getattr(par, f"template_coeff_z1_{g}") 

115 weight = getattr(par, f"template_coeff_weight_{g}") 

116 

117 if par.template_coeff_sampler == "dirichlet": 

118 template_coeffs[g] = sample_template_coeff_dirichlet( 

119 z, alpha0, alpha1, z1, weight 

120 ) 

121 

122 elif par.template_coeff_sampler == "dirichlet_alpha_mode": 

123 template_coeffs[g] = sample_template_coeff_dirichlet__alpha_mode( 

124 z, 

125 alpha0, 

126 alpha1, 

127 z1, 

128 weight, 

129 alpha0_std=getattr(par, f"template_coeff_alpha0_{g}_std"), 

130 alpha1_std=getattr(par, f"template_coeff_alpha1_{g}_std"), 

131 ) 

132 

133 return template_coeffs