Coverage for src / galsbi / ucat / config / common.py: 100%
164 statements
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-17 09:47 +0000
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-17 09:47 +0000
1# Copyright (C) 2018 ETH Zurich, Institute for Particle Physics and Astrophysics
3"""
4Created on Mar 5, 2018
5author: Joerg Herbel
6"""
8import numpy as np
10# ==================================================================
11# G E N E R A L
12# ==================================================================
14# Filter bands (multi-band only)
15filters = ["g", "r", "i", "z", "y"]
16# Filters full names
17filters_full_names = {
18 "B": "SuprimeCam_B",
19 "g": "HSC_g",
20 "r": "HSC_r2",
21 "i": "HSC_i2",
22 "z": "HSC_z",
23 "y": "HSC_y",
24}
25reference_band = "i"
27# Seeds
28# ---------------------
29# General seed set when initializing UFig
30seed = 102301239
31# Seed offset set before sampling the number of galaxies
32gal_num_seed_offset = 100
33# Seed offset set before drawing from luminosity function
34gal_lum_fct_seed_offset = 1200
35# Seed offset set before sampling galaxy positions
36gal_dist_seed_offset = 200
37# Seed offset set before sampling the galaxies' Sersic indices distribution
38gal_sersic_seed_offset = 300
39# Seed offset set before sampling the galaxies' ellipticity distribution
40gal_ellipticities_seed_offset = 400
41# Seed to make redshift addition deterministic
42seed_ngal = 500
44# Sampling and other general parameters
45# -------------------------------------
46# Sampling mode for galaxy catalog, either "wcs" (for image simulations) or "healpix"
47sampling_mode = "wcs"
48# healpy map for healpix sampling
49healpix_map = None
50# Healpix pixelization for sampling
51nside_sampling = 512
52# Remote directory containing maps
53maps_remote_dir = "ufig_res/maps/"
54# galaxy_catalog_name
55galaxy_catalog_name = "ucat_galaxies.h5"
56# galaxy_sed_catalog_name
57galaxy_sed_catalog_name = "ucat_galaxies_sed.h5"
58# star_catalog_name
59star_catalog_name = "ucat_stars.h5"
60# by how much the number of galaxies should be multiplied (used to test high or low
61# blending regimes)
62ngal_multiplier = 1
63# if to enrich the catalog by parameters such as bkg, absolute ellipticity, etc.
64enrich_catalog = False
66# ==================================================================
67# I M A G E P R O P E R T I E S
68# ==================================================================
70# Number of pixels on image x-axis
71size_x = 4200
72# Number of pixels on image y-axis
73size_y = 4200
74# Center of field (RA)
75ra0 = 150.24793
76# Center of field (Dec)
77dec0 = 2.23140
78# Pixel scale (arcsec/pixel)
79pixscale = 0.168
81# ==================================================================
82# C O S M O L O G Y
83# ==================================================================
85# Reduced Hubble parameter
86h = 0.678
87# Matter density
88omega_m = 0.308
89# Dark energy density
90omega_l_in = "flat"
92# ==================================================================
93# G A L A X Y C A T A L O G
94# ==================================================================
96# -------------------
97# Luminosity function
98# -------------------
100# Galaxy type, each will have its own luminosity functions (see luminosity_functions.py:
101# GALAXY_TYPES_ALL, initialize_luminosity_functions)
102galaxy_types = ["red", "blue"]
103# Functional forms of M* and phi*, can be linexp (linear and exponential) or
104# logpower (for logarithmic and power law)
105lum_fct_parametrization = "linexp"
106# Filter band in which the luminosity function is valid
107lum_fct_filter_band = "B"
108# Schechter parameter alpha for blue galaxies
109lum_fct_alpha_blue = -1.3
110# Schechter parameter alpha for red galaxies
111lum_fct_alpha_red = -0.5
112# Parameter a in M*(z) = a*z + b for blue galaxies (if linexp),
113# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
114lum_fct_m_star_blue_slope = -0.9408582
115# Parameter b in M*(z) = a*z + b for blue galaxies (if linexp),
116# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
117lum_fct_m_star_blue_intcpt = -20.40492365
118# Parameter a in M*(z) = a*z + b for red galaxies (if linexp),
119# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
120lum_fct_m_star_red_slope = -0.70798041
121# Parameter b in M*(z) = a*z + b for red galaxies (if linexp),
122# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
123lum_fct_m_star_red_intcpt = -20.37196157
124# Parameter a in phi*(z) = a * exp(bz) for blue galaxies (if linexp),
125# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
126lum_fct_phi_star_blue_amp = 0.00370253
127# Parameter b in phi*(z) = a * exp(bz) for blue galaxies (if linexp),
128# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
129lum_fct_phi_star_blue_exp = -0.10268436
130# Parameter a in phi*(z) = a * exp(bz) for red galaxies(if linexp),
131# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
132lum_fct_phi_star_red_amp = 0.0035097
133# Parameter b in phi*(z) = a * exp(bz) for red galaxies (if linexp),
134# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
135lum_fct_phi_star_red_exp = -0.70596888
136# Parameter controlling the redshift after which M* for blue galaxies is constant
137# if the lum_fct_parametrization = truncated_logexp
138lum_fct_z_const_blue = 4
139# Parameter controlling the redshift after which M* for red galaxies is constant
140# if the lum_fct_parametrization = truncated_logexp
141lum_fct_z_const_red = 4
142# Resolution for sampling redshift
143lum_fct_z_res = 0.001
144# Maximum redshift of galaxies to sample
145lum_fct_z_max = 3
146# Maximum absolute magnitude to be sampled
147lum_fct_m_max = -5
148# Resolution for sampling absolute magnitudes
149lum_fct_m_res = 0.001
150# Maximum number of blue galaxies in one healpix pixel. This parameter has the function
151# to limit runtime for ABC runs. A reasonable value critically depends on the healpix
152# pixelization and the maximum absolute and apparent magnitudes.
153n_gal_max_blue = np.inf
154# Same as parameter above for red galaxies.
155n_gal_max_red = np.inf
156# If to raise an exception if the above limits are reached, or just to finish the
157# calculation and continue
158raise_max_num_gal_error = True
159# Raise an error if there are some galaxies that are fainter than specified
160raise_z_m_interp_error = False
161# Memory limit for the size of the catalog in Mb (assuming 10 float64 columns per
162# catalog), if reached, the UCatNumGalError is thrown, prevents jobs from crashing
163max_memlimit_gal_catalog = np.inf
164# Precision of the catalog.
165catalog_precision = np.float64
168# ----------
169# Clustering
170# ----------
171apply_clustering_for_galaxy_positions = False
174# ---------------------
175# Template coefficients
176# ---------------------
177# Template coefficients are drawn from Dirichlet distributions of order 5 separately for
178# blue and red galaxies.
179# The parameters alpha of these distributions evolve with redshift. The evolution is
180# parameterized 10 parameters, separately for blue and red galaxies: 5 parameters at
181# redshift 0 and 5 parameters at redshift z1 > 0. Dirichlet
182# parameters are calculated separately for each galaxy according to
183# alpha(z) = (alpha0)^(1-z/z1) * (alpha1)^(z/z1),
184# where alpha is five-dimensional. Thus, alpha(z=0) = alpha0 and alpha(z=z1) = alpha1
185# with a smooth transition in between. Finally, after drawing the coefficients, they are
186# weighted separately along each dimension.
188# which sampling model to use.
189# 'dirichlet': from Herbel et al. 2018,
190# 'dirichlet_alpha_sum': enforce sum of alpha
191# 'dirichlet_alpha_std': enforce standard deviation of alpha
192# 'dirichlet_alpha_mode': use parameterisation with mode and standard deviation
193template_coeff_sampler = "dirichlet"
194# Redshift z1>0 for blue galaxies
195template_coeff_z1_blue = 1
196# Redshift z1>0 for red galaxies
197template_coeff_z1_red = 1
198# Dirichlet parameter for blue galaxies at z=0
199template_coeff_alpha0_blue_0 = 1.9946549
200# Dirichlet parameter for blue galaxies at z=0
201template_coeff_alpha0_blue_1 = 1.99469164
202# Dirichlet parameter for blue galaxies at z=0
203template_coeff_alpha0_blue_2 = 1.99461187
204# Dirichlet parameter for blue galaxies at z=0
205template_coeff_alpha0_blue_3 = 1.9946589
206# Dirichlet parameter for blue galaxies at z=0
207template_coeff_alpha0_blue_4 = 1.99463069
208# Dirichlet parameter for blue galaxies at z=z1
209template_coeff_alpha1_blue_0 = template_coeff_alpha0_blue_0
210# Dirichlet parameter for blue galaxies at z=z1
211template_coeff_alpha1_blue_1 = template_coeff_alpha0_blue_1
212# Dirichlet parameter for blue galaxies at z=z1
213template_coeff_alpha1_blue_2 = template_coeff_alpha0_blue_2
214# Dirichlet parameter for blue galaxies at z=z1
215template_coeff_alpha1_blue_3 = template_coeff_alpha0_blue_3
216# Dirichlet parameter for blue galaxies at z=z1
217template_coeff_alpha1_blue_4 = template_coeff_alpha0_blue_4
218# Dirichlet parameter for red galaxies at z=0
219template_coeff_alpha0_red_0 = 1.62158197
220# Dirichlet parameter for red galaxies at z=0
221template_coeff_alpha0_red_1 = 1.62137391
222# Dirichlet parameter for red galaxies at z=0
223template_coeff_alpha0_red_2 = 1.62175061
224# Dirichlet parameter for red galaxies at z=0
225template_coeff_alpha0_red_3 = 1.62159144
226# Dirichlet parameter for red galaxies at z=0
227template_coeff_alpha0_red_4 = 1.62165971
228# Dirichlet parameter for red galaxies at z=z1
229template_coeff_alpha1_red_0 = template_coeff_alpha0_red_0
230# Dirichlet parameter for red galaxies at z=z1
231template_coeff_alpha1_red_1 = template_coeff_alpha0_red_1
232# Dirichlet parameter for red galaxies at z=z1
233template_coeff_alpha1_red_2 = template_coeff_alpha0_red_2
234# Dirichlet parameter for red galaxies at z=z1
235template_coeff_alpha1_red_3 = template_coeff_alpha0_red_3
236# Dirichlet parameter for red galaxies at z=z1
237template_coeff_alpha1_red_4 = template_coeff_alpha0_red_4
238# std of the Dirichlet distribution for blue galaxies at z=0
239template_coeff_alpha0_blue_std = 0.1
240# std of the Dirichlet distribution for blue galaxies at z=z1
241template_coeff_alpha1_blue_std = 0.1
242# std of the Dirichlet distribution for red galaxies at z=0
243template_coeff_alpha0_red_std = 0.1
244# std of the Dirichlet distribution for red galaxies at z=z1
245template_coeff_alpha1_red_std = 0.1
246# Weights for blue and red galaxies applied after drawing the coefficients
247template_coeff_weight_blue = np.array(
248 [3.47116583e09, 3.31262983e06, 2.13298069e09, 1.63722853e10, 1.01368664e09]
249)
250template_coeff_weight_red = np.array(
251 [3.84729278e09, 1.56768931e06, 3.91242928e08, 4.66363319e10, 3.03275998e07]
252)
253# If to store the SED in the catalog
254save_SEDs = False
256# ------------------------------
257# Apparent magnitude calculation
258# ------------------------------
260# The way magnitudes are calculated
261magnitude_calculation = "table"
262# File containing filter throughputs
263filters_file_name = "filters.h5"
264# File containing template spectra
265templates_file_name = "template_spectra.h5"
266# File containing integration tables of template spectra for different filters
267templates_int_tables_file_name = "template_integrals.h5"
268# If True, copy the template integration table files to the current working directory
269# (local scratch)
270copy_template_int_tables_to_cwd = False
271# Extinction map (expected to be in galactic coordinates)
272extinction_map_file_name = "extinction.fits"
273# Minimum galaxy magnitude cutoff
274gals_mag_min = 16
275# Maximum galaxy magnitude cutoff
276gals_mag_max = 27
277# Noise level corresponding to background flux, constant across bands (for abs mag
278# calculation, see ABC for deepfields)
279noise_const_abs_mag = None
280# Redshift noise, z=sig*(1+z) Leigle et al 2015, doi:10.3847/0067-0049/224/2/24
281noise_z_sigma = 0.007
282# Redshift outlier fraction, from 0 to max_z present in catalog Leigle et al 2015,
283# doi:10.3847/0067-0049/224/2/24
284noise_z_outlier_fraction = 0.005
286# -------------------
287# Sersic distribution
288# -------------------
290# Mean sersic n for mag<20 galaxies
291sersic_n_mean_low = 0.2
292# RMS sersic n for mag<20 galaxies
293sersic_n_sigma_low = 1
294# 1st mean sersic n for mag>20 galaxies
295sersic_n_mean_1_hi = 0.3
296# 1st RMS sersic n for mag>20 galaxies
297sersic_n_sigma_1_hi = 0.5
298# 2nd mean sersic n for mag>20 galaxies
299sersic_n_mean_2_hi = 1.6
300# 2nd RMS sersic n for mag>20 galaxies
301sersic_n_sigma_2_hi = 0.4
302# Minimum sersic n cutoff
303sersic_n_offset = 0.2
304# Switch sampling methods for sersic index
305# default = use default from Berge et al 2012 (sersic_n_mean_low, sersic_n_sigma_low,
306# sersic_n_mean_1_hi, sersic_n_sigma_1_hi, sersic_n_mean_2_hi, sersic_n_sigma_2_hi,
307# sersic_n_offset)
308# blue_red_fixed = use sersic_index_blue for blue and sersic_index_red for red
309# single = use sersic_single_value for all galaxies
310# blue_red_betaprime = use the betaprime distribution with mode and size, limited by
311# (0.2, 10)
312sersic_sampling_method = "blue_red_betaprime"
313# Fixed sersic index all galaxies in case sersic_sampling_method = single
314sersic_single_value = 1.0
315# Fixed sersic index for blue galaxies in case sersic_sampling_method = blue_red_fixed
316sersic_index_blue = 1.0
317# Fixed sersic index for red galaxies in case sersic_sampling_method = blue_red_fixed
318sersic_index_red = 4.0
319# Sersic_betaprime model, peak for blue galaxies
320sersic_betaprime_blue_mode = 0.8
321# Sersic_betaprime model, spread for blue galaxies
322sersic_betaprime_blue_size = 5
323# Sersic_betaprime model, slope of the redshift dependence
324sersic_betaprime_blue_mode_alpha = 0
325# Sersic_betaprime model, peak for red galaxies
326sersic_betaprime_red_mode = 1.5
327# Sersic_betaprime model, spread for red galaxies
328sersic_betaprime_red_size = 50
329# Sersic_betaprime model, slope of the redshift dependence
330sersic_betaprime_red_mode_alpha = 0
331# Sersic_betaprime model, minimum sersic index
332sersic_n_min = 0.2
333# Sersic_betaprime model, maximum sersic index
334sersic_n_max = 10
336# ----------
337# Size model
338# ----------
339# Physical sizes are sampled from a log-normal distribution and then transformed into
340# apparent sizes using redshift and the input cosmology. The mean of the log of physical
341# sizes depends linearly on the absolute magnitude of a galaxy:
342# log(Mean physical sizes) = a * (Abs. mag.) + b
343# The standard deviation of the distribution of the log of physical sizes is constant.
345# Method to sample sizes:
346# "single" - for the same distribution for red and blue, or
347# "red_blue" for separate parameters
348# "sdss_fit" - for the SDSS fit from Shen et al. 2003 (in that case use the sdss_fit
349# parameters)
350logr50_sampling_method = "single"
351# shift to the absolute magnitude for the mean physical size of galaxies
352logr50_phys_M0 = -20
353# Slope of the evolution of the log of the mean physical size of galaxies (a in eq.
354# above)
355logr50_phys_mean_slope = -0.24293465
356# Intercept of the evolution of the log of the mean physical size of galaxies (b in eq.
357# above)
358logr50_phys_mean_intcpt = 1.2268735
359# Standard deviation of the log of physical sizes
360logr50_phys_std = 0.56800081
361# logr50_phys_mean_slope for red galaxies
362logr50_phys_mean_slope_red = -0.24293465
363# logr50_phys_mean_intcpt for red galaxies
364logr50_phys_mean_intcpt_red = 1.2268735
365# logr50_phys_std for red galaxies
366logr50_phys_std_red = 0.56800081
367# logr50_phys_mean_slope for blue galaxies
368logr50_phys_mean_slope_blue = -0.24293465
369# logr50_phys_mean_intcpt for blue galaxies
370logr50_phys_mean_intcpt_blue = 1.2268735
371# logr50_phys_std for blue galaxies
372logr50_phys_std_blue = 0.56800081
373# redshift dependence scaling factor parametrized with (1+z)**alpha, also for sdss_fit
374logr50_alpha = 0
375logr50_alpha_red = 0
376logr50_alpha_blue = 0
377# SDSS fit parameters (defaults to measurements for Fig. 4 of Shen et al. 2003)
378logr50_sdss_fit_sigma1_red = 0.48
379logr50_sdss_fit_sigma2_red = 0.25
380logr50_sdss_fit_M0_red = -20.52
381logr50_sdss_fit_a_red = 0.6
382logr50_sdss_fit_b_red = -4.63
383logr50_sdss_fit_sigma1_blue = 0.48
384logr50_sdss_fit_sigma2_blue = 0.25
385logr50_sdss_fit_M0_blue = -20.52
386logr50_sdss_fit_alpha_blue = 0.21
387logr50_sdss_fit_beta_blue = 0.53
388logr50_sdss_fit_gamma_blue = -1.31
391# ------------------------
392# Ellipticity distribution
393# ------------------------
395# Mean galaxy e1 before PSF
396e1_mean = 0
397# RMS galaxy e1 before PSF
398e1_sigma = 0.39
399# Mean galaxy e2 before PSF
400e2_mean = 0
401# RMS galaxy e1 before PSF
402e2_sigma = 0.39
403# mean galaxy e1 for blue galaxies
404e1_mean_blue = 0
405# mean galaxy e2 for blue galaxies
406e2_mean_blue = 0
407# Sigma of a Gaussian for blue galaxies
408ell_sigma_blue = 0.4600
409# Sigma of a Gaussian for red galaxies
410ell_sigma_red = 0.2
411# Parameters for the ellipticity distribution for the
412# ellipticity_sampling_method=blue_red_miller2013
413ell_disc_log_a = -1.3708147902715042
414ell_disc_emax = 0.8
415ell_disc_min_e = 0.02
416ell_disc_pow_alpha = 1
418ell_bulge_b = 2.368
419ell_bulge_c = 6.691
421# Ratio of a and b parameters
422ell_beta_ab_ratio = 0.57
423# Mode of the ellipticity distribution
424ell_beta_mode = 0.2
425# Sum of a and b parameters of the beta distribution
426ell_beta_ab_sum = 2.9
427# Maximum ellipticity
428ell_beta_emax = 0.98
429# p(e) with beta_function and beta_function_mod for red galaxies: maximum ellipticity
430ell_beta_mode_red = 0.2
431# p(e) with beta_function and beta_function_mod for red galaxies: sum of a and b
432# parameters of the beta distribution
433ell_beta_ab_sum_red = 2.9
434# p(e) with beta_function and beta_function_mode for blue galaxies: maximum ellipticity
435ell_beta_mode_blue = 0.2
436# p(e) with beta_function and beta_function_mode for blue galaxies: sum of a and b
437# parameters of the beta distribution
438ell_beta_ab_sum_blue = 2.9
440# Switch sampling methods for ellipticity:
441# default = use single Gaussian (e*_mean, e*_sigma),
442# blue_red = use separate Gaussians for blue and red (ell_sigma_blue, ell_sigma_red)
443# blue_red_miller2013 = use functions from Miller et al 2013 (ell_disc_log_a,
444# ell_disc_min_e, ell_bulge_b, ell_disc_pow_alpha)
445# beta_ratio = use modified beta function (ell_beta_ab_ratio, ell_beta_ab_sum,
446# ell_beta_emax)
447# beta_mode = use modified beta function (ell_beta_mode, ell_beta_ab_sum,
448# ell_beta_emax)
449# beta_mode_red_blue = same as beta_function_mode, but for different parameters
450# for red and blue
451ellipticity_sampling_method = "beta_mode_red_blue"
453# -----
454# Shear
455# -----
457path_shear_map = None
459gamma1_sign = -1