Coverage for src/galsbi/ucat/config/common.py: 100%
161 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-10 11:12 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-10 11:12 +0000
1# Copyright (C) 2018 ETH Zurich, Institute for Particle Physics and Astrophysics
3"""
4Created on Mar 5, 2018
5author: Joerg Herbel
6"""
8import numpy as np
10# ==================================================================
11# G E N E R A L
12# ==================================================================
14# Filter bands (multi-band only)
15filters = ["g", "r", "i", "z", "y"]
16# Filters full names
17filters_full_names = {
18 "B": "SuprimeCam_B",
19 "g": "HSC_g",
20 "r": "HSC_r2",
21 "i": "HSC_i2",
22 "z": "HSC_z",
23 "y": "HSC_y",
24}
25reference_band = "i"
27# Seeds
28# ---------------------
29# General seed set when initializing UFig
30seed = 102301239
31# Seed offset set before sampling the number of galaxies
32gal_num_seed_offset = 100
33# Seed offset set before drawing from luminosity function
34gal_lum_fct_seed_offset = 1200
35# Seed offset set before sampling galaxy positions
36gal_dist_seed_offset = 200
37# Seed offset set before sampling the galaxies' Sersic indices distribution
38gal_sersic_seed_offset = 300
39# Seed offset set before sampling the galaxies' ellipticity distribution
40gal_ellipticities_seed_offset = 400
41# Seed to make redshift addition deterministic
42seed_ngal = 500
44# Sampling and other general parameters
45# -------------------------------------
46# Sampling mode for galaxy catalog, either "wcs" (for image simulations) or "healpix"
47sampling_mode = "wcs"
48# healpy map for healpix sampling
49healpix_map = None
50# Healpix pixelization for sampling
51nside_sampling = 512
52# Remote directory containing maps
53maps_remote_dir = "ufig_res/maps/"
54# galaxy_catalog_name
55galaxy_catalog_name = "ufig_galaxies.h5"
56# star_catalog_name
57star_catalog_name = "ufig_stars.h5"
58# by how much the number of galaxies should be multiplied (used to test high or low
59# blending regimes)
60ngal_multiplier = 1
62# ==================================================================
63# I M A G E P R O P E R T I E S
64# ==================================================================
66# Number of pixels on image x-axis
67size_x = 10000
68# Number of pixels on image y-axis
69size_y = 10000
70# Center of field (RA)
71ra0 = 70.459787
72# Center of field (Dec)
73dec0 = -44.244444
74# Pixel scale (arcsec/pixel)
75pixscale = 0.263
78# ==================================================================
79# C O S M O L O G Y
80# ==================================================================
82# Reduced Hubble parameter
83h = 0.7
84# Matter density
85omega_m = 0.3
86# Dark energy density
87omega_l_in = "flat"
89# ==================================================================
90# G A L A X Y C A T A L O G
91# ==================================================================
93# -------------------
94# Luminosity function
95# -------------------
97# Galaxy type, each will have its own luminosity functions (see luminosity_functions.py:
98# GALAXY_TYPES_ALL, initialize_luminosity_functions)
99galaxy_types = ["red", "blue"]
100# Functional forms of M* and phi*, can be linexp (linear and exponential) or
101# logpower (for logarithmic and power law)
102lum_fct_parametrization = "linexp"
103# Filter band in which the luminosity function is valid
104lum_fct_filter_band = "B"
105# Schechter parameter alpha for blue galaxies
106lum_fct_alpha_blue = -1.3
107# Schechter parameter alpha for red galaxies
108lum_fct_alpha_red = -0.5
109# Parameter a in M*(z) = a*z + b for blue galaxies (if linexp),
110# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
111lum_fct_m_star_blue_slope = -0.9408582
112# Parameter b in M*(z) = a*z + b for blue galaxies (if linexp),
113# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
114lum_fct_m_star_blue_intcpt = -20.40492365
115# Parameter a in M*(z) = a*z + b for red galaxies (if linexp),
116# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
117lum_fct_m_star_red_slope = -0.70798041
118# Parameter b in M*(z) = a*z + b for red galaxies (if linexp),
119# M*(z) = a*log(1+z) + b (if logpower), M*: Schechter parameter
120lum_fct_m_star_red_intcpt = -20.37196157
121# Parameter a in phi*(z) = a * exp(bz) for blue galaxies (if linexp),
122# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
123lum_fct_phi_star_blue_amp = 0.00370253
124# Parameter b in phi*(z) = a * exp(bz) for blue galaxies (if linexp),
125# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
126lum_fct_phi_star_blue_exp = -0.10268436
127# Parameter a in phi*(z) = a * exp(bz) for red galaxies(if linexp),
128# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
129lum_fct_phi_star_red_amp = 0.0035097
130# Parameter b in phi*(z) = a * exp(bz) for red galaxies (if linexp),
131# phi*(z) = a*(1+z)**b (if logpower), phi*: Schechter parameter
132lum_fct_phi_star_red_exp = -0.70596888
133# Parameter controlling the redshift after which M* for blue galaxies is constant
134# if the lum_fct_parametrization = truncated_logexp
135lum_fct_z_const_blue = 4
136# Parameter controlling the redshift after which M* for red galaxies is constant
137# if the lum_fct_parametrization = truncated_logexp
138lum_fct_z_const_red = 4
139# Resolution for sampling redshift
140lum_fct_z_res = 0.001
141# Maximum redshift of galaxies to sample
142lum_fct_z_max = 3
143# Maximum absolute magnitude to be sampled
144lum_fct_m_max = -5
145# Resolution for sampling absolute magnitudes
146lum_fct_m_res = 0.001
147# Maximum number of blue galaxies in one healpix pixel. This parameter has the function
148# to limit runtime for ABC runs. A reasonable value critically depends on the healpix
149# pixelization and the maximum absolute and apparent magnitudes.
150n_gal_max_blue = np.inf
151# Same as parameter above for red galaxies.
152n_gal_max_red = np.inf
153# If to raise an exception if the above limits are reached, or just to finish the
154# calculation and continue
155raise_max_num_gal_error = True
156# Raise an error if there are some galaxies that are fainter than specified
157raise_z_m_interp_error = False
158# Memory limit for the size of the catalog in Mb (assuming 10 float64 columns per
159# catalog), if reached, the UCatNumGalError is thrown, prevents jobs from crashing
160max_memlimit_gal_catalog = 2000
161# Precision of the catalog.
162catalog_precision = np.float64
165# ----------
166# Clustering
167# ----------
168apply_clustering_for_galaxy_positions = False
171# ---------------------
172# Template coefficients
173# ---------------------
174# Template coefficients are drawn from Dirichlet distributions of order 5 separately for
175# blue and red galaxies.
176# The parameters alpha of these distributions evolve with redshift. The evolution is
177# parameterized 10 parameters, separately for blue and red galaxies: 5 parameters at
178# redshift 0 and 5 parameters at redshift z1 > 0. Dirichlet
179# parameters are calculated separately for each galaxy according to
180# alpha(z) = (alpha0)^(1-z/z1) * (alpha1)^(z/z1),
181# where alpha is five-dimensional. Thus, alpha(z=0) = alpha0 and alpha(z=z1) = alpha1
182# with a smooth transition in between. Finally, after drawing the coefficients, they are
183# weighted separately along each dimension.
185# which sampling model to use.
186# 'dirichlet': from Herbel et al. 2018,
187# 'dirichlet_alpha_sum': enforce sum of alpha
188# 'dirichlet_alpha_std': enforce standard deviation of alpha
189# 'dirichlet_alpha_mode': use parameterisation with mode and standard deviation
190template_coeff_sampler = "dirichlet"
191# Redshift z1>0 for blue galaxies
192template_coeff_z1_blue = 1
193# Redshift z1>0 for red galaxies
194template_coeff_z1_red = 1
195# Dirichlet parameter for blue galaxies at z=0
196template_coeff_alpha0_blue_0 = 1.9946549
197# Dirichlet parameter for blue galaxies at z=0
198template_coeff_alpha0_blue_1 = 1.99469164
199# Dirichlet parameter for blue galaxies at z=0
200template_coeff_alpha0_blue_2 = 1.99461187
201# Dirichlet parameter for blue galaxies at z=0
202template_coeff_alpha0_blue_3 = 1.9946589
203# Dirichlet parameter for blue galaxies at z=0
204template_coeff_alpha0_blue_4 = 1.99463069
205# Dirichlet parameter for blue galaxies at z=z1
206template_coeff_alpha1_blue_0 = template_coeff_alpha0_blue_0
207# Dirichlet parameter for blue galaxies at z=z1
208template_coeff_alpha1_blue_1 = template_coeff_alpha0_blue_1
209# Dirichlet parameter for blue galaxies at z=z1
210template_coeff_alpha1_blue_2 = template_coeff_alpha0_blue_2
211# Dirichlet parameter for blue galaxies at z=z1
212template_coeff_alpha1_blue_3 = template_coeff_alpha0_blue_3
213# Dirichlet parameter for blue galaxies at z=z1
214template_coeff_alpha1_blue_4 = template_coeff_alpha0_blue_4
215# Dirichlet parameter for red galaxies at z=0
216template_coeff_alpha0_red_0 = 1.62158197
217# Dirichlet parameter for red galaxies at z=0
218template_coeff_alpha0_red_1 = 1.62137391
219# Dirichlet parameter for red galaxies at z=0
220template_coeff_alpha0_red_2 = 1.62175061
221# Dirichlet parameter for red galaxies at z=0
222template_coeff_alpha0_red_3 = 1.62159144
223# Dirichlet parameter for red galaxies at z=0
224template_coeff_alpha0_red_4 = 1.62165971
225# Dirichlet parameter for red galaxies at z=z1
226template_coeff_alpha1_red_0 = template_coeff_alpha0_red_0
227# Dirichlet parameter for red galaxies at z=z1
228template_coeff_alpha1_red_1 = template_coeff_alpha0_red_1
229# Dirichlet parameter for red galaxies at z=z1
230template_coeff_alpha1_red_2 = template_coeff_alpha0_red_2
231# Dirichlet parameter for red galaxies at z=z1
232template_coeff_alpha1_red_3 = template_coeff_alpha0_red_3
233# Dirichlet parameter for red galaxies at z=z1
234template_coeff_alpha1_red_4 = template_coeff_alpha0_red_4
235# std of the Dirichlet distribution for blue galaxies at z=0
236template_coeff_alpha0_blue_std = 0.1
237# std of the Dirichlet distribution for blue galaxies at z=z1
238template_coeff_alpha1_blue_std = 0.1
239# std of the Dirichlet distribution for red galaxies at z=0
240template_coeff_alpha0_red_std = 0.1
241# std of the Dirichlet distribution for red galaxies at z=z1
242template_coeff_alpha1_red_std = 0.1
243# Weights for blue and red galaxies applied after drawing the coefficients
244template_coeff_weight_blue = np.array(
245 [3.47116583e09, 3.31262983e06, 2.13298069e09, 1.63722853e10, 1.01368664e09]
246)
247template_coeff_weight_red = np.array(
248 [3.84729278e09, 1.56768931e06, 3.91242928e08, 4.66363319e10, 3.03275998e07]
249)
251# ------------------------------
252# Apparent magnitude calculation
253# ------------------------------
255# The way magnitudes are calculated
256magnitude_calculation = "table"
257# File containing filter throughputs
258filters_file_name = "filters.h5"
259# File containing template spectra
260templates_file_name = "template_spectra.h5"
261# File containing integration tables of template spectra for different filters
262templates_int_tables_file_name = "template_integrals.h5"
263# If True, copy the template integration table files to the current working directory
264# (local scratch)
265copy_template_int_tables_to_cwd = False
266# Extinction map (expected to be in galactic coordinates)
267extinction_map_file_name = "extinction.fits"
268# Minimum galaxy magnitude cutoff
269gals_mag_min = 16
270# Maximum galaxy magnitude cutoff
271gals_mag_max = 27
272# Noise level corresponding to background flux, constant across bands (for abs mag
273# calculation, see ABC for deepfields)
274noise_const_abs_mag = None
275# Redshift noise, z=sig*(1+z) Leigle et al 2015, doi:10.3847/0067-0049/224/2/24
276noise_z_sigma = 0.007
277# Redshift outlier fraction, from 0 to max_z present in catalog Leigle et al 2015,
278# doi:10.3847/0067-0049/224/2/24
279noise_z_outlier_fraction = 0.005
281# -------------------
282# Sersic distribution
283# -------------------
285# Mean sersic n for mag<20 galaxies
286sersic_n_mean_low = 0.2
287# RMS sersic n for mag<20 galaxies
288sersic_n_sigma_low = 1
289# 1st mean sersic n for mag>20 galaxies
290sersic_n_mean_1_hi = 0.3
291# 1st RMS sersic n for mag>20 galaxies
292sersic_n_sigma_1_hi = 0.5
293# 2nd mean sersic n for mag>20 galaxies
294sersic_n_mean_2_hi = 1.6
295# 2nd RMS sersic n for mag>20 galaxies
296sersic_n_sigma_2_hi = 0.4
297# Minimum sersic n cutoff
298sersic_n_offset = 0.2
299# Switch sampling methods for sersic index
300# default = use default from Berge et al 2012 (sersic_n_mean_low, sersic_n_sigma_low,
301# sersic_n_mean_1_hi, sersic_n_sigma_1_hi, sersic_n_mean_2_hi, sersic_n_sigma_2_hi,
302# sersic_n_offset)
303# blue_red_fixed = use sersic_index_blue for blue and sersic_index_red for red
304# single = use sersic_single_value for all galaxies
305# blue_red_betaprime = use the betaprime distribution with mode and size, limited by
306# (0.2, 10)
307sersic_sampling_method = "blue_red_betaprime"
308# Fixed sersic index all galaxies in case sersic_sampling_method = single
309sersic_single_value = 1.0
310# Fixed sersic index for blue galaxies in case sersic_sampling_method = blue_red_fixed
311sersic_index_blue = 1.0
312# Fixed sersic index for red galaxies in case sersic_sampling_method = blue_red_fixed
313sersic_index_red = 4.0
314# Sersic_betaprime model, peak for blue galaxies
315sersic_betaprime_blue_mode = 0.8
316# Sersic_betaprime model, spread for blue galaxies
317sersic_betaprime_blue_size = 5
318# Sersic_betaprime model, slope of the redshift dependence
319sersic_betaprime_blue_mode_alpha = 0
320# Sersic_betaprime model, peak for red galaxies
321sersic_betaprime_red_mode = 1.5
322# Sersic_betaprime model, spread for red galaxies
323sersic_betaprime_red_size = 50
324# Sersic_betaprime model, slope of the redshift dependence
325sersic_betaprime_red_mode_alpha = 0
326# Sersic_betaprime model, minimum sersic index
327sersic_n_min = 0.2
328# Sersic_betaprime model, maximum sersic index
329sersic_n_max = 10
331# ----------
332# Size model
333# ----------
334# Physical sizes are sampled from a log-normal distribution and then transformed into
335# apparent sizes using redshift and the input cosmology. The mean of the log of physical
336# sizes depends linearly on the absolute magnitude of a galaxy:
337# log(Mean physical sizes) = a * (Abs. mag.) + b
338# The standard deviation of the distribution of the log of physical sizes is constant.
340# Method to sample sizes:
341# "single" - for the same distribution for red and blue, or
342# "red_blue" for separate parameters
343# "sdss_fit" - for the SDSS fit from Shen et al. 2003 (in that case use the sdss_fit
344# parameters)
345logr50_sampling_method = "single"
346# shift to the absolute magnitude for the mean physical size of galaxies
347logr50_phys_M0 = -20
348# Slope of the evolution of the log of the mean physical size of galaxies (a in eq.
349# above)
350logr50_phys_mean_slope = -0.24293465
351# Intercept of the evolution of the log of the mean physical size of galaxies (b in eq.
352# above)
353logr50_phys_mean_intcpt = 1.2268735
354# Standard deviation of the log of physical sizes
355logr50_phys_std = 0.56800081
356# logr50_phys_mean_slope for red galaxies
357logr50_phys_mean_slope_red = -0.24293465
358# logr50_phys_mean_intcpt for red galaxies
359logr50_phys_mean_intcpt_red = 1.2268735
360# logr50_phys_std for red galaxies
361logr50_phys_std_red = 0.56800081
362# logr50_phys_mean_slope for blue galaxies
363logr50_phys_mean_slope_blue = -0.24293465
364# logr50_phys_mean_intcpt for blue galaxies
365logr50_phys_mean_intcpt_blue = 1.2268735
366# logr50_phys_std for blue galaxies
367logr50_phys_std_blue = 0.56800081
368# redshift dependence scaling factor parametrized with (1+z)**alpha, also for sdss_fit
369logr50_alpha = 0
370logr50_alpha_red = 0
371logr50_alpha_blue = 0
372# SDSS fit parameters (defaults to measurements for Fig. 4 of Shen et al. 2003)
373logr50_sdss_fit_sigma1_red = 0.48
374logr50_sdss_fit_sigma2_red = 0.25
375logr50_sdss_fit_M0_red = -20.52
376logr50_sdss_fit_a_red = 0.6
377logr50_sdss_fit_b_red = -4.63
378logr50_sdss_fit_sigma1_blue = 0.48
379logr50_sdss_fit_sigma2_blue = 0.25
380logr50_sdss_fit_M0_blue = -20.52
381logr50_sdss_fit_alpha_blue = 0.21
382logr50_sdss_fit_beta_blue = 0.53
383logr50_sdss_fit_gamma_blue = -1.31
386# ------------------------
387# Ellipticity distribution
388# ------------------------
390# Mean galaxy e1 before PSF
391e1_mean = 0
392# RMS galaxy e1 before PSF
393e1_sigma = 0.39
394# Mean galaxy e2 before PSF
395e2_mean = 0
396# RMS galaxy e1 before PSF
397e2_sigma = 0.39
398# mean galaxy e1 for blue galaxies
399e1_mean_blue = 0
400# mean galaxy e2 for blue galaxies
401e2_mean_blue = 0
402# Sigma of a Gaussian for blue galaxies
403ell_sigma_blue = 0.4600
404# Sigma of a Gaussian for red galaxies
405ell_sigma_red = 0.2
406# Parameters for the ellipticity distribution for the
407# ellipticity_sampling_method=blue_red_miller2013
408ell_disc_log_a = -1.3708147902715042
409ell_disc_emax = 0.8
410ell_disc_min_e = 0.02
411ell_disc_pow_alpha = 1
413ell_bulge_b = 2.368
414ell_bulge_c = 6.691
416# Ratio of a and b parameters
417ell_beta_ab_ratio = 0.57
418# Mode of the ellipticity distribution
419ell_beta_mode = 0.2
420# Sum of a and b parameters of the beta distribution
421ell_beta_ab_sum = 2.9
422# Maximum ellipticity
423ell_beta_emax = 0.98
424# p(e) with beta_function and beta_function_mod for red galaxies: maximum ellipticity
425ell_beta_mode_red = 0.2
426# p(e) with beta_function and beta_function_mod for red galaxies: sum of a and b
427# parameters of the beta distribution
428ell_beta_ab_sum_red = 2.9
429# p(e) with beta_function and beta_function_mode for blue galaxies: maximum ellipticity
430ell_beta_mode_blue = 0.2
431# p(e) with beta_function and beta_function_mode for blue galaxies: sum of a and b
432# parameters of the beta distribution
433ell_beta_ab_sum_blue = 2.9
435# Switch sampling methods for ellipticity:
436# default = use single Gaussian (e*_mean, e*_sigma),
437# blue_red = use separate Gaussians for blue and red (ell_sigma_blue, ell_sigma_red)
438# blue_red_miller2013 = use functions from Miller et al 2013 (ell_disc_log_a,
439# ell_disc_min_e, ell_bulge_b, ell_disc_pow_alpha)
440# beta_ratio = use modified beta function (ell_beta_ab_ratio, ell_beta_ab_sum,
441# ell_beta_emax)
442# beta_mode = use modified beta function (ell_beta_mode, ell_beta_ab_sum,
443# ell_beta_emax)
444# beta_mode_red_blue = same as beta_function_mode, but for different parameters
445# for red and blue
446ellipticity_sampling_method = "beta_mode_red_blue"
448# -----
449# Shear
450# -----
452path_shear_map = None
454gamma1_sign = -1