Source code for cosmoHammer.pso.BestFitPositionGenerator

'''
Created on Oct 22, 2013

@author: J.Akeret
'''
from __future__ import print_function, division, absolute_import, unicode_literals

import numpy
from cosmoHammer.pso.ParticleSwarmOptimizer import ParticleSwarmOptimizer
from cosmoHammer.pso.CurvatureFitter import CurvatureFitter

[docs]class BestFitPositionGenerator(object): ''' A position generator which uses a particle swarm optimization algorithm to find the best fit value and the collapsed swarm to estimate the curvature matrix at that point. The optimization process can be parallelized over MPI and python multiprocessing. :param mpi: True if a MPI implementation of the PSO should be used. Default is False :param threads: Number of multiprocessing thread that should be started. Default is 1 :param particleCount: Number of particle to use for the optimization. If none the number is derrived according to the size of the parameter space. Default is None :param maxIter: the maximal number of iterations. Default will be set to MAX_PSO_ITER ''' MAX_PSO_ITER = 1000 MIN_PARTICLE_COUNT = 20 BEST_FILE_NAME = "_best_fit_global.out" BEST_INFO_FILE_NAME = "_best_fit_info.out" def __init__(self, mpi=False, threads=1, particleCount=None, maxIter=None): """ default constructor """ self.mpi = mpi self.threads = threads self.particleCount = particleCount self.maxIter = maxIter if(self.maxIter is None): self.maxIter = self.MAX_PSO_ITER
[docs] def setup(self, sampler): """ setup the generator """
self.sampler = sampler
[docs] def generate(self): """ generates the positions by running the PSO and using the chain's min and max and then calling the paraboloid fitter in order to estimate the covariance matrix. The position will then be generated by drawing position from a multivariant gaussian distribution defined by the best fit and the estimated covariance matrix. The progress of the PSO is successively stored to a the disk. """ chain = self.sampler.likelihoodComputationChain if(self.particleCount is None): self.particleCount = self.get_particle_count() if(self.mpi): #only import when needed in order to avoid an error in case mpi4py is not installed from cosmoHammer.sampler.util.pso.MpiParticleSwarmOptimizer import MpiParticleSwarmOptimizer pso = MpiParticleSwarmOptimizer(chain, chain.min, chain.max, self.particleCount, threads=self.threads) else: pso = ParticleSwarmOptimizer(chain, chain.min, chain.max, self.particleCount, threads=self.threads) swarm = [] with open(self.sampler.filePrefix+self.BEST_FILE_NAME, "w") as f: for i, cswarm in enumerate(pso.sample(self.maxIter)): self._save(f, i, pso) if(i>=0): swarm.append(cswarm) self._save(f, i+1, pso) self.sampler.log("Best fit found after %s iteration: %f %s"%(i+1, pso.gbest.fitness, pso.gbest.position)) fswarm = [] for i in range(1,5): fswarm += swarm[-i] self._storeSwarm(fswarm) fitter = CurvatureFitter(fswarm, pso.gbest) mean, _cov = fitter.fit() self._storeFit(pso.gbest, _cov) # dim = len(mean)-1 # sigma = 0.4 # factor = _cov[dim,dim] / numpy.sqrt(sigma) # _cov[:-1,dim] = _cov[:-1,dim]/factor # _cov[dim,:-1] = _cov[dim,:-1]/factor # _cov[dim,dim] = sigma # print "" # fitter = ParaboloidFitter(fswarm, pso.gbest, True) # mean, _cov = fitter.fit() sigma = numpy.sqrt(numpy.diag(_cov)) print("=> found sigma:", sigma) # fitter = ParaboloidFitter(pso.swarm, pso.gbest) # mean, _cov = fitter.fit() # sigma = numpy.sqrt(numpy.diag(_cov)) # print "=> found sigma:", sigma samples = numpy.random.multivariate_normal(mean, _cov, self.sampler.nwalkers) # print numpy.std(samples, axis=0)
return samples # self.sampler.paramValues = pso.gbest.position # self.sampler.paramWidths = self.sampler.paramValues * self.SPREAD_FACTOR # generator = SampleBallPositionGenerator() # generator.setup(self.sampler) # return generator.generate()
[docs] def get_particle_count(self): """ Generates the number of particles to use by using a logarithmic function of the parameter count """
return int(self.MIN_PARTICLE_COUNT + self.MIN_PARTICLE_COUNT*numpy.log(self.sampler.paramCount)) def __str__(self, *args, **kwargs): return "BestFitPositionGenerator: particleCount=%s, mpi=%s, threads=%s"%(self.particleCount, self.mpi, self.threads) def _save(self, f, i, pso): if(pso.isMaster()): particle = pso.gbest f.write("%s\t%f\t"%(i, particle.fitness)) f.write("\t".join([str(p) for p in particle.position])) f.write("\n") f.flush() def _storeFit(self, gbest, _cov): with open(self.sampler.filePrefix+self.BEST_INFO_FILE_NAME, "w") as f: f.write("#Best fit: %s\n"%(gbest.fitness)) f.write(", ".join([str(i) for i in gbest.position])) f.write("\n#Estimated covariance matrix:\n") for row in _cov: f.write ("[" + ", ".join([str(i) for i in row]) + "]\n") def _storeSwarm(self, swarm): with open(self.sampler.filePrefix+"swarm", "w") as f: for particle in swarm: f.write(str(particle.fitness)) f.write("\t") f.write("\t".join([str(p) for p in particle.position]))
f.write("\n")