Source code for estats.stats.CrossStarletPeaks

# Copyright (C) 2019 ETH Zurich
# Institute for Particle Physics and Astrophysics
# Author: Dominik Zuercher

import numpy as np
import healpy as hp
from estats.stats import CrossPeaks


[docs]def context(): """ Defines the paramters used by the plugin """ stat_type = 'convergence-cross' required = ['Starlet_steps', 'Starlet_scales', 'Starlet_selected_scales', 'peak_lower_threshold', 'Starlet_sliced_bins', 'NSIDE', 'min_count', 'SNR_peaks', 'max_SNR'] defaults = [1000, [48, 65, 89, 121, 164, 223, 303, 412, 560, 761, 1034, 1405, 1910, 2597, 3530, 4799, 6523, 8867, 12053, 16384], [48, 65, 89, 121, 164, 223, 303, 412, 560, 761, 1034, 1405, 1910, 2597, 3530, 4799, 6523, 8867, 12053, 16384], 2.5, 15, 1024, 30, False, 100.] types = ['int', 'list', 'list', 'float', 'int', 'int', 'int', 'bool', 'float'] return required, defaults, types, stat_type
[docs]def CrossStarletPeaks(map_w, weights, ctx): """ Performs the starlet-wavelet decomposition of map and counts the local maxima in each filter band. :param map: A Healpix convergence map :param weights: A Healpix map with pixel weights (integer >=0) :param ctx: Context instance :return: Starlet counts (num filter bands, Starlet_steps + 1) """ try: from esd import esd except ImportError: raise ImportError( "Did not find esd package. " "It is required for this module to work properly. " "Download from: " "https://cosmo-gitlab.phys.ethz.ch/cosmo_public/esd") # build decomposition # (remove first map that contains remaining small scales) wavelet_counts = np.zeros((len(ctx['Starlet_scales']), ctx['Starlet_steps'] + 1)) # count peaks in each filter band wave_iter = esd.calc_wavelet_decomp_iter( map_w, l_bins=ctx['Starlet_scales']) counter = 0 for ii, wmap in enumerate(wave_iter): if ii == 0: continue # reapply mask wmap[np.isclose(weights, 0)] = hp.UNSEEN peak_vals = CrossPeaks.CrossPeaks(wmap, weights, ctx) wavelet_counts[counter] = peak_vals counter += 1 return wavelet_counts
[docs]def process(data, ctx, scale_to_unity=False): # backwards compatibility for data without map std if data.shape[1] > ctx['CrossPeaks_steps']: data = data[:, :-1] num_of_scales = len(ctx['Starlet_scales']) new_data = np.zeros( (int(data.shape[0] / num_of_scales), data.shape[1] * num_of_scales)) for jj in range(int(data.shape[0] / num_of_scales)): new_data[jj, :] = data[jj * num_of_scales: (jj + 1) * num_of_scales, :].ravel() return new_data
[docs]def slice(ctx): # number of datavectors for each scale mult = 1 # number of scales num_of_scales = len(ctx['Starlet_scales']) # either mean or sum, for how to assemble the data into the bins operation = 'sum' n_bins_sliced = ctx['Starlet_sliced_bins'] # if True assumes that first and last entries of the data vector indicate # the upper and lower boundaries and that binning scheme indicates # bin edges rather than their indices range_mode = True return num_of_scales, n_bins_sliced, operation, mult, range_mode
[docs]def decide_binning_scheme(data, meta, bin, ctx): num_of_scales = len(ctx['Starlet_scales']) n_bins_original = ctx['Starlet_steps'] n_bins_sliced = ctx['Starlet_sliced_bins'] # get the correct tomographic bins bin_idx = np.zeros(meta.shape[0], dtype=bool) bin_idx[np.where(meta[:, 0] == bin)[0]] = True bin_idx = np.repeat(bin_idx, meta[:, 1].astype(int)) data = data[bin_idx, :] # Get bins for each smooting scale bin_centers = np.zeros((num_of_scales, n_bins_sliced)) bin_edges = np.zeros((num_of_scales, n_bins_sliced + 1)) for scale in range(num_of_scales): # cut correct scale and minimum and maximum kappa values data_act = data[:, n_bins_original * scale:n_bins_original * (scale + 1)] minimum = np.max(data_act[:, 0]) maximum = np.min(data_act[:, -1]) new_kappa_bins = np.linspace(minimum, maximum, n_bins_sliced + 1) bin_edges[scale, :] = new_kappa_bins bin_centers_act = new_kappa_bins[:-1] + 0.5 * \ (new_kappa_bins[1:] - new_kappa_bins[:-1]) bin_centers[scale, :] = bin_centers_act return bin_edges, bin_centers
[docs]def filter(ctx): filter = np.zeros(0) for scale in reversed(ctx['Starlet_scales']): if scale in ctx['Starlet_selected_scales']: f = [True] * \ ctx['Starlet_sliced_bins'] f = np.asarray(f) else: f = [False] * \ ctx['Starlet_sliced_bins'] f = np.asarray(f) filter = np.append(filter, f) return filter