Coverage for src/galsbi/ucat/galaxy_population_models/galaxy_size.py: 94%
54 statements
« prev ^ index » next coverage.py v7.8.0, created at 2025-04-03 17:18 +0000
« prev ^ index » next coverage.py v7.8.0, created at 2025-04-03 17:18 +0000
1# Copyright (C) 2018 ETH Zurich, Institute for Particle Physics and Astrophysics
3"""
4Created 2021
5author: Tomasz Kacprzak
6"""
8from warnings import warn
10import numpy as np
13def apply_pycosmo_distfun(dist_fun, z):
14 z_unique, inv_ind = np.unique(z, return_inverse=True)
15 dist = dist_fun(a=1 / (1 + z_unique))[inv_ind] # Unit: Mpc
16 return dist
19def r50_phys_to_ang(r50_phys, cosmo, z):
20 """
21 Convert physical size to angular size
22 :param r50_phys: physical size of the galaxy in kpc
23 :param cosmo: cosmological model
24 :param z: redshift of the galaxy
25 :return: angular size of the galaxy in arcsec
26 """
27 d_a = apply_pycosmo_distfun(cosmo.background.dist_ang_a, z) # unit: Mpc
28 r50_ang = r50_phys / (1e3 * d_a) # unit: rad
29 r50_ang = np.rad2deg(r50_ang) * 60**2 # unit: arcsec
30 return r50_ang
33##########################################################
34#
35# Sampling galaxy size
36#
37##########################################################
40def sample_r50_for_galaxy_type(z, abs_mag, cosmo, par, galaxy_type):
41 """
42 Sample the physical size of a galaxy given its absolute magnitude
43 and redshift. The physical size is sampled from a log-normal
44 distribution with a mean that depends on the absolute magnitude
45 and redshift. The physical size is then converted to an angular
46 size using the cosmological distance.
47 :param z: redshift of the galaxy
48 :param abs_mag: absolute magnitude of the galaxy
49 :param cosmo: cosmological model
50 :param par: ucat parameters
51 :param galaxy_type: type of the galaxy (e.g. "red", "blue")
52 :return: angular size of the galaxy in pixels, in arcsec and physical size in kpc
53 """
54 backwards_compatibility(par)
56 # set defaults
57 if not hasattr(par, "logr50_sampling_method"):
58 par.logr50_sampling_method = "single"
60 if par.logr50_sampling_method == "single":
61 r50_phys = sample_r50_phys(
62 abs_mag_shift=abs_mag - par.logr50_phys_M0,
63 logr50_phys_std=par.logr50_phys_std,
64 logr50_phys_mean_slope=par.logr50_phys_mean_slope,
65 logr50_phys_mean_intcpt=par.logr50_phys_mean_intcpt,
66 logr50_alpha=par.logr50_alpha,
67 z=z,
68 )
70 elif par.logr50_sampling_method == "red_blue":
71 r50_phys = sample_r50_phys(
72 abs_mag_shift=abs_mag - par.logr50_phys_M0,
73 logr50_phys_std=getattr(par, f"logr50_phys_std_{galaxy_type}"),
74 logr50_phys_mean_slope=getattr(
75 par, f"logr50_phys_mean_slope_{galaxy_type}"
76 ),
77 logr50_phys_mean_intcpt=getattr(
78 par, f"logr50_phys_mean_intcpt_{galaxy_type}"
79 ),
80 logr50_alpha=getattr(par, f"logr50_alpha_{galaxy_type}"),
81 z=z,
82 )
84 elif par.logr50_sampling_method == "sdss_fit":
85 # this sampling is based on https://arxiv.org/abs/astro-ph/0301527
86 sigma1 = getattr(par, f"logr50_sdss_fit_sigma1_{galaxy_type}")
87 sigma2 = getattr(par, f"logr50_sdss_fit_sigma2_{galaxy_type}")
88 M0 = getattr(par, f"logr50_sdss_fit_M0_{galaxy_type}")
90 # Equation (16)
91 std = sigma2 + ((sigma1 - sigma2) / (1 + 10 ** (-0.8 * (abs_mag - M0))))
93 if galaxy_type == "red":
94 # Equation (14)
95 slope = -0.4 * par.logr50_sdss_fit_a_red
96 intcp = par.logr50_sdss_fit_b_red
97 elif galaxy_type == "blue":
98 alpha = par.logr50_sdss_fit_alpha_blue
99 beta = par.logr50_sdss_fit_beta_blue
100 gamma = par.logr50_sdss_fit_gamma_blue
101 # Equation (15)
102 # (intcp is not a classic intercept, but we can reuse sample_r50_phys)
103 slope = -0.4 * alpha
104 intcp = (beta - alpha) * np.log10(1 + 10 ** (-0.4 * (abs_mag - M0))) + gamma
105 else:
106 raise ValueError(
107 f"unsupported galaxy_type={galaxy_type} for"
108 " logr50_sampling_method=sdss_fit"
109 )
111 r50_phys = sample_r50_phys(
112 abs_mag_shift=abs_mag,
113 logr50_phys_std=std,
114 logr50_phys_mean_slope=slope,
115 logr50_phys_mean_intcpt=intcp,
116 logr50_alpha=getattr(par, f"logr50_alpha_{galaxy_type}"),
117 z=z,
118 )
120 else:
121 raise Exception(
122 f"unsupported logr50_sampling_method={par.logr50_sampling_method}"
123 )
125 # convert physical size to observerd angular size
126 r50_ang = r50_phys_to_ang(r50_phys, cosmo, z)
128 r50_ang_pix = r50_ang.astype(par.catalog_precision) / par.pixscale
129 r50_ang_arcsec = r50_ang.astype(par.catalog_precision)
130 r50_phys = r50_phys.astype(par.catalog_precision)
132 return r50_ang_pix, r50_ang_arcsec, r50_phys
135def sample_r50_phys(
136 abs_mag_shift,
137 logr50_phys_std,
138 logr50_phys_mean_slope,
139 logr50_phys_mean_intcpt,
140 logr50_alpha=0.0,
141 z=0.0,
142):
143 r50_phys = np.random.normal(loc=0, scale=logr50_phys_std, size=len(abs_mag_shift))
144 r50_phys += abs_mag_shift * logr50_phys_mean_slope + logr50_phys_mean_intcpt
145 r50_phys = np.exp(r50_phys) # unit: kpc
146 r50_phys *= (1 + z) ** logr50_alpha
148 return r50_phys
151def backwards_compatibility(par):
152 if hasattr(par, "sample_r50_model"):
153 warn(
154 DeprecationWarning(
155 "sample_r50_model is deprecated, "
156 "define logr50_phys_M0 or logr50_sdss_fit_M0 instead"
157 ),
158 stacklevel=1,
159 )
160 if par.sample_r50_model == "base":
161 par.logr50_phys_M0 = 0.0
162 elif par.sample_r50_model == "shift20":
163 par.logr50_phys_M0 = -20.0